生物工程学报  2021, Vol. 37 Issue (12): 4329-4341
http://dx.doi.org/10.13345/j.cjb.210092
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

唐宽刚, 董博, 温小俊, 殷玉梅, 薛敏, 苏子先, 王茅雁
Tang Kuangang, Dong Bo, Wen Xiaojun, Yin Yumei, Xue Min, Su Zixian, Wang Maoyan
异源表达蒙古沙冬青AmDREB1F基因提高转基因拟南芥的耐逆性
Ectopic expression of the AmDREB1F gene from Ammopiptanthus mongolicus enhances stress tolerance of transgenic Arabidopsis
生物工程学报, 2021, 37(12): 4329-4341
Chinese Journal of Biotechnology, 2021, 37(12): 4329-4341
10.13345/j.cjb.210092

文章历史

Received: January 28, 2021
Accepted: June 11, 2021
Published: June 11, 2021
异源表达蒙古沙冬青AmDREB1F基因提高转基因拟南芥的耐逆性
唐宽刚 , 董博 , 温小俊 , 殷玉梅 , 薛敏 , 苏子先 , 王茅雁     
内蒙古农业大学 生命科学学院,内蒙古 呼和浩特 010018
摘要:脱水应答元件结合蛋白(Dehydration-responsive element binding proteins,DREBs) 是一类重要的植物耐逆相关转录因子。蒙古沙冬青Ammopiptanthus mongolicus是中国西北荒漠区特有的强耐逆常绿阔叶灌木。为探明其AmDREB1F基因在耐受非生物逆境中的功能和作用机理,文中对该基因编码蛋白的亚细胞定位、表达模式和转基因拟南芥的耐逆性进行了分析。结果表明:AmDREB1F编码的蛋白质定位于细胞核内;在室内培养幼苗中,该基因在正常条件下不表达,在低温和干旱胁迫下有较明显表达,在高盐和高温胁迫下仅有微弱表达,而在脱落酸(Abscisic acid,ABA) 处理下不表达;在野外生长植株的叶片中,其表达量在秋末、冬季和早春远高于其他季节,而不同器官相比,其在根和未成熟果荚中的表达量远高于其他器官;将AmDREB1F在拟南芥中组成型表达可提高多个受DREBs调控的胁迫响应基因的转录水平,增强转基因株系对干旱、高盐和低温以及氧化胁迫的耐性,同时导致其生长发育延滞,外施赤霉素3可消除生长延滞现象;将该基因进行胁迫诱导表达也可提高转基因拟南芥对上述非生物胁迫的耐受性,而不影响其生长发育。这些结果说明AmDREB1F可能通过ABA非依赖的信号途径在响应和耐受逆境胁迫中起正调节作用。
关键词沙冬青    脱水应答元件结合蛋白(DREB)    基因表达    转基因    耐逆性    
Ectopic expression of the AmDREB1F gene from Ammopiptanthus mongolicus enhances stress tolerance of transgenic Arabidopsis
Kuangang Tang , Bo Dong , Xiaojun Wen , Yumei Yin , Min Xue , Zixian Su , Maoyan Wang     
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, Inner Mongolia, China
Abstract: Dehydration-responsive element binding proteins (DREBs) are an important class of transcription factors related to plant stress tolerance. Ammopiptanthus mongolicus is an evergreen broadleaf shrub endemic to desert areas of northwest China, and it has a very high tolerance to harsh environments. In order to reveal the functions and mechanisms of the AmDREB1F gene from this species in enduring abiotic stresses, we performed subcellular localization test, expression pattern analysis, and stress tolerance evaluation of transgenic Arabidopsis harboring this gene. The protein encoded by AmDREB1F was localized in the nucleus. In laboratory-cultured A. mongolicus seedlings, the expression of AmDREB1F was induced significantly by cold and drought but very slightly by salt and heat stresses, and undetectable upon ABA treatment. In leaves of naturally growing shrubs in the wild, the expression levels of the AmDREB1F gene were much higher during the late autumn, winter and early spring than in other seasons. Moreover, the expression was abundant in roots and immature pods rather than other organs of the shrubs. Constitutive expression of AmDREB1F in Arabidopsis induced the expression of several DREB-regulated stress-responsive genes and improved the tolerance of transgenic lines to drought, high salinity and low temperature as well as oxidative stress. The constitutive expression also caused growth retardation of the transgenics, which could be eliminated by the application of gibberellin 3. Stress-inducible expression of AmDREB1F also enhanced the tolerance of transgenic Arabidopsis to all of the four stresses mentioned above, without affecting its growth and development. These results suggest that AmDREB1F gene may play positive regulatory roles in response to abiotic stresses through the ABA-independent signaling pathways.
Keywords: Ammopiptanthus mongolicus    dehydration-responsive element binding protein (DREB)    gene expression    transgene    stress tolerance    

转录因子是植物逆境信号转导途径中的关键成员,在植物响应和耐受非生物胁迫中起重要调节作用[1-2]。脱水响应元件结合蛋白(Dehydration- responsive element (DRE) binding proteins,DREBs) 是迄今发现的一类最重要的与耐逆相关的转录因子,在植物响应干旱、高盐、低温和高温胁迫的转录调控网络中起着核心作用,成为植物耐逆性分子改良的重要靶标[3-5]

DREBs属于植物特有的AP2/ERF (APETALA2/ ethylene-responsive factor) 家族中的一个亚族,在其成员的N端区域均含有一个保守的AP2/ERF结构域(约60个氨基酸),可与靶基因启动子区的DRE/CRT (C-repeat) 元件特异性结合,而其C端区域保守性低,为转录激活区[4-5]。目前已鉴定的DREB基因主要包括CBF (CRT-binding factor)/DREB1DREB2两种类型,其中前者如拟南芥Arabidopsis thaliana L. AtCBF3/DREB1A和玉米Zea mays L. ZmDREB1A,主要受低温胁迫的诱导,异源表达可以提高转基因植物对低温、干旱和/或盐胁迫的耐性,而后者如拟南芥AtDREB2A和水稻Oryza sativa L. OsDREB2A,主要受干旱、高盐和/或高温诱导并可提高转基因植物对这些胁迫的耐受能力[3-8]。然而,有不少植物,尤其非模式植物的CBF/DREB1DREB2型基因的功能难以如此简单区分[5],如矮苹果Malus baccata L. MbDREB1、准噶尔无叶豆Eremosparton songoricum Litv. EsDREB2B和蒙古沙冬青(Ammopiptanthus mongolicus (Maxim. ex kom.) Cheng F.) 的AmDREB2C基因在响应和耐受低温及干旱等多种非生物胁迫中发挥着重要作用[9-11]

DREB1Fs属于CBF/DREB1型成员。在拟南芥中AtDREB1FAtDDF1 (Dwarf and delayed- flowering 1) 和AtFTL1 (Freezing tolerant line 1) 为同一基因[4, 12-14],其在进化上与CBFs属于不同的分支[15]。尽管在拟南芥、水稻、蓝莓Vaccinium corymbosum L.和大豆Glycine max L.等许多植物中发现了DREB1F/DDF1基因序列,但目前仅对这4种植物的DREB1F/DDF1基因进行了功能鉴定。拟南芥AtDREB1F/DDF1/FTL1和大豆GmDREB1F;1受高盐、低温、干旱和热胁迫的诱导,超表达时可提高突变体或转基因拟南芥对这些胁迫的耐性,同时引起生长延滞[12-14, 16]。水稻OsDREB1F受高盐、低温和干旱诱导并可提高超表达转基因拟南芥和水稻对这些胁迫的耐受能力,但无生长延滞现象[17]。蓝莓VcDDF1不受低温诱导,但其超表达可提高转基因蓝莓中许多低温调节基因(Cold-regulated genes) 的表达,转基因株系的耐冻性明显提高而生长和开花未出现延滞[18-19]。这些证据表明,不同物种的DREB1F/DDF1基因在耐受非生物胁迫中起着重要作用,但在功能上已发生分化。

蒙古沙冬青(下文统称为沙冬青) 是一种古老的珍稀濒危灌木,属于豆科沙冬青属,主要分布于内蒙古自治区西部和宁夏回族自治区及甘肃省的局部荒漠地带,为分布区唯一的常绿阔叶植物。这些地区气候干燥(年降水量常不足200 mm,而年蒸发量高达2 000–4 000 mm)、冬季严寒(-20 ℃–-30 ℃) 且土壤含盐量高(达0.38%),使该物种形成很强的耐旱、耐寒和耐盐碱等耐逆特性,成为研究植物耐逆机理和发掘耐逆基因的好材料[20-21]。近年来,人们从沙冬青转录组中鉴定出数以千万计的胁迫响应基因,其中包括数十个DREB基因[22-23]。目前已克隆出AmCBF/DREB1AmDREB2.1等8个AmDREB基因,其中AmDREB1AmDREB2AmDREB2CAmDREB3已进行功能研究[11, 24-30]。这些基因可被低温、干旱、高盐和/或高温胁迫诱导,可提高转基因拟南芥对这些胁迫的耐受性。此外,AmDREB2CAmDREB3还可以分别促进转基因植物中亚麻酸和花青素的合成,提高细胞质膜的完整性和细胞的抗氧化胁迫能力[11, 25, 29-30]。本论文在课题组前期研究[26]的基础上对AmDREB1F/DDF1 (下文统称为AmDREB1F) 进行了亚细胞定位和表达分析及转基因功能鉴定,为明确其生理功能和作用机理奠定了基础,同时为解析沙冬青耐逆性的分子机理提供了依据。

1 材料与方法 1.1 亚细胞定位分析

利用PCR方法(引物:5′-TCTCTAGACAACACAAACCAAACTTATCC-3′和5′-TCCCCGGGAAATGAAAAGCTCCACAAG-3′,分别加入XbaⅠ和Sma Ⅰ酶切位点) 从克隆载体[26]上扩增AmDREB1F编码区cDNA (将终止密码子突变),经测序验证后连接到瞬时表达载体pBI-GFP35S启动子与GFP之间,然后转化大肠杆菌Escherichia coli DH5α并进行菌落PCR检测和质粒酶切鉴定。同时用酶解法分离拟南芥叶肉原生质体,用构建好的载体和空载体分别对其进行转化[31],在荧光显微镜(日本Nikon NT88-V3) 下观察。

1.2 沙冬青胁迫处理和野外取样

沙冬青种子由内蒙古自治区巴彦淖尔市磴口县林业局提供。用沙培法[23]培养幼苗1.5个月,参照Yin等方法[11]进行不同胁迫处理:(1) 低温:在低温光照培养箱(美国Percival LT-36VL,下同) 中进行,程序为4 ℃ 24 h、0 ℃ 12 h和-6 ℃ 12 h,共48 h。(2) 高温:在电热恒温箱中于42 ℃处理48 h,期间每隔8 h浇水一次,以避免干旱胁迫。(3) 干旱失水:将幼苗从盆中取出,用自来水漂洗根部沙土,置于25 ℃光照培养箱中培养48 h。(4) 高盐:将幼苗停止浇水4 d,然后浇350 mmol/L NaCl溶液一次。(5) ABA:将幼苗置于1×MS培养液中预培养2 d,再放入含100 µmol/L ABA的1×MS培养液中培养48 h,用小气泵通气。各种处理分别在处理前(0 h,对照) 和处理开始后2、6、12、24、48 h取样。野外样品取自呼和浩特市南郊蒙草抗旱公司野生植物园区沙冬青成年植株(14 a),取样时间为2014年9月至2015年7月。嫩叶于每个月的月初取样一次,花蕾于2015年4月底取样,未成熟果荚等器官于同年5月底取样。所有样品在液氮中速冻后保存于-76 ℃。

1.3 半定量RT-PCR

从-76 ℃冻存样品中提取总RNA并进行纯化,再用莫洛尼鼠白血病病毒逆转录酶(TaKaRa) 合成cDNA第一链为模板,以沙冬青AmACTINAmeIF3作为内参基因进行半定量RT-PCR,检测AmDREB1F基因的表达量。AmDREB1F引物为5′-GTATGTGGATGAAGTTGCGGG-3′和5′-GGTT GGACAAGGGAATGGTAG-3′,AmACTINAmeIF3引物同文献[11]。反应体系为10×Easy Taq酶缓冲液1.5 µL,dNTPs (2.5 mmol/L) 1.2 µL,上、下游引物各0.3 µL (10 µmol/L),Easy Taq酶0.15 µL (5 U/µL),cDNA模板X µL,用ddH2O补足15 µL。反应程序为:94 ℃ 3 min;94 ℃ 30 s,61 ℃ 30 s,72 ℃ 30 s,35个循环;72 ℃ 10 min;4 ℃保温。产物进行琼脂糖凝胶电泳。

1.4 植物表达载体构建

以1.3中合成的cDNA为模板,用AmDREB1F编码区引物5′-CAAGATCTAACACAAACCAAA CTTATCC-3′ (加BglⅡ酶切位点) 和5′-CGGTCACCAAGCTAGATTCGTATC-3′ (加BstEⅡ酶切位点) 进行PCR。将扩增片段克隆后送北京华大基因公司测序,然后定向连接到植物表达载体pCOMBIA3301 (p3301) 上并转化E. coli,经菌落PCR检测和质粒酶切鉴定获得组成型表达载体p3301-35S-AmDREB1F。诱导表达载体p3301- RD29A-AmDREB1F由董博等构建[26]RD29A为拟南芥AtRD29A基因的胁迫诱导型启动子[5]

1.5 拟南芥的转化与分子检测

利用冻融法将构建好的植物表达载体导入根癌农杆菌GV3101,再用农杆菌沾花法转化野生型拟南芥(Ecotype Columbia 0)。将转化植株进行常规培养和草胺膦(Phosphinothricin,PPT,日本明治生物) 筛选及AmDREB1F编码区的PCR (T1代) 和半定量RT-PCR (T2代) 检测(内参基因为AtACTIN2),具体方法和AtACTIN2引物同文献[11]。用目的基因表达量较低(组成型表达) 或较高(诱导表达) 的T3代纯合体进行耐逆性鉴定。

1.6 转基因植株赤霉素处理

将生长发育迟缓、不能正常抽苔开花的组成型表达幼苗(T1或T2代) 用100 µmol/L的赤霉素3 (Gibberellin 3,GA3) 喷雾1–2次(间隔约10 d),继续培养收获种子。

1.7 转基因株系耐逆性鉴定 1.7.1 种子萌发期鉴定

将种子点种在1/2 MS和附加甘露醇(300 mmol/L或350 mmol/L) 或NaCl (125 mmol/L或175 mmol/L) 的1/2 MS固体培养基上,于正常条件下培养6 d,统计萌发率和幼苗根长并拍照。

1.7.2 苗期鉴定

将1/2 MS培养基上培养约10 d的幼苗移栽到营养钵中,于正常条件下培养2–3周后进行胁迫处理:(1) 干旱:将幼苗停止浇水18–19 d,然后恢复正常浇水,10 d后统计存活率。(2) 盐胁迫:用250 mmol/L NaCl溶液浇幼苗一次,5 d后恢复正常浇水,2周后统计存活率。(3) 低温:依次进行4 ℃ 24 h、-7 ℃ 7 h和4 ℃ 12 h处理,再放回到正常条件下培养,2周后统计存活率。

1.7.3 氧化胁迫生理指标的测定

将营养钵中培养3周的幼苗分别进行干旱(停水10 d)、低温(4 ℃ 48 h) 和盐胁迫(浇250 mmol/L NaCl溶液后5 d) 处理,取莲座叶按照试剂盒方法进行H2O2原位检测[32]和丙二醛(Malondialdehyde,MDA) 含量测定。H2O2检测用福州迈新生物技术开发有限公司3, 3′-二氨基联苯胺(Diaminobenzidine,DAB) 显色试剂盒,MDA测定用苏州科铭生物技术有限公司试剂盒。

1.7.4 胁迫诱导基因表达分析

将种子在1/2 MS培养基上培养12 d,分别在高渗(加入350 mmol/L甘露醇)、高盐(加入175 mmol/L NaCl) 和低温(4 ℃) 胁迫下处理3 h,取叶片提取总RNA并进行纯化,利用半定量RT-PCR检测胁迫诱导基因(见2.3.3) 的表达量。AtKIN1引物为5′-GAGACCAACAAGAATGCCTTCCAAG-3′和5′-CCGCATCCGATACACTCTTTCCC-3′,其他基因引物同文献[11]。

上述实验均以正常条件下培养的野生型拟南芥(WT) 为对照。所有实验至少进行3次生物学重复,每次实验每份材料点种约50粒种子或20株幼苗,计算平均值进行统计分析。利用SAS软件包中的Student’s t-test分析转基因株系与WT之间的差异显著性(P < 0.05和P < 0.01)。

2 结果与分析 2.1 AmDREB1F编码蛋白的亚细胞定位分析

转录因子在细胞核内行使其转录调节功能。董博等[26]推测在AmDREB1F编码蛋白(241 aa) 的30–54位含有一个核定位信号。为了确定其是否定位在细胞核内,本研究构建了植物瞬时表达载体pBI-AmDREB1F-GFP并转化拟南芥原生质体,观察到转化子中绿色荧光信号集中在细胞核内,而用空载体pBI-GFP转化后荧光信号分布于整个细胞,证明AmDREB1F蛋白定位于细胞核内(图 1)。

图 1 AmDREB1F编码蛋白亚细胞定位图 Fig. 1 Subcellular localization of the protein encoded by AmDREB1F. (A) Restriction analysis of the transient expression vector. M: Trans 2K Plus DNA Marker; 1F: digestion products of the vector. (B) Subcellular localization. The GFP (control) and 1F (AmDREB1F)-GFP proteins were transiently expressed in Arabidopsis mesophyll protoplasts and were observed under a fluorescence microscope. The images under dark, bright and merged fields are presented. Bars=10 μm.
2.2 AmDREB1F基因的表达分析 2.2.1 AmDREB1F在胁迫处理幼苗中的表达分析

沙冬青具有很强的综合耐逆特性。为了解AmDREB1F对非生物胁迫的响应,首先分析了其在低温和干旱失水等胁迫处理的沙冬青幼苗中的表达变化。从图 2A可见,正常条件下几乎检测不到AmDREB1F的转录本,但在干旱失水2–12 h和低温处理2–24 h期间,其转录本积累明显可见,尤其在6 h和12 h增加较明显;在高温和盐胁迫下,其转录水平只有微弱增加,而外源ABA对该基因无诱导作用。推测AmDREB1F可能通过ABA非依赖的信号途径参与沙冬青对非生物胁迫、主要是低温和干旱胁迫的响应。

图 2 AmDREB1F在不同胁迫条件、不同季节和不同器官中的表达模式 Fig. 2 Expression patterns of AmDREB1F in different stress conditions, different seasons, and different plant organs. (A) The expression changes of AmDREB1F in laboratory-cultured A. mongolicus seedlings under different stress and ABA treatments for 0 h (control) to 48 h. Dehy: dehydration. (B) The expression change of AmDREB1F in young leaves of A. mongolicus shrubs growing in the wild across different seasons. (C) The expression levels of AmDREB1F in different organs of the shrubs during the spring season. R: lateral roots; T: young twigs; L: young leaves; F: flower buds; P: immature pods.
2.2.2 AmDREB1F在野外生长植株中的表达分析

沙冬青最突出的特点是耐冻性极强。为了获知AmDREB1F在耐受季节性低温胁迫中的功能信息,我们检测了其在不同季节野外生长沙冬青嫩叶中的表达变化。结果表明,从9月初至11月初(昼/夜气温约23/13–9/-2 ℃),其转录水平逐渐增高至全年最高,并在此后一直维持高水平转录至翌年3月初(昼/夜气温约-5/-16–4/-11 ℃);从4月初至7月初(昼/夜气温约10/-3–28/18 ℃),其转录水平明显下降至全年最低(图 2B)。可见,该基因在秋末、冬季和早春的表达量明显高于其他季节,可能在沙冬青抵抗季节性寒冷天气中发挥功能。

野外生长的沙冬青中,AmDREB1F在侧根中转录水平最高,其次是未成熟果荚,而在嫩枝、嫩叶和花蕾中低水平转录(图 2C)。此结果表明,该基因可能主要在根系和果荚发育或与之相关的生理活动中起调节作用。

2.3 AmDREB1F转基因拟南芥的获得与耐逆性鉴定 2.3.1 AmDREB1F转基因拟南芥的生长状况

由于沙冬青转基因技术尚未建立,本研究通过转基因拟南芥鉴定AmDREB1F的功能。首先构建了组成型表达载体p3301-35S-AmDREB1F并转化拟南芥,通过PPT筛选和PCR检测得到29株T1代幼苗,但绝大多数幼苗生长缓慢、叶片小而深绿、迟迟不能抽薹开花,出现严重的生长延滞现象。喷施GA3后可基本消除此现象,获得T2代种子(图 3A)。多数T2代株系仍有此现象,喷施GA3后获得T3代种子。对T2代进行半定量RT-PCR检测,发现不同株系生长延滞的程度与AmDREB1F的表达量基本呈正相关(图 3B)。为了避免组成型表达造成的生长延滞现象,利用诱导表达载体p3301-RD29A-AmDREB1F转化拟南芥,经PPT筛选、PCR检测和半定量RT-PCR检测(图略) 得到6个AmDREB1F表达量较高的株系,其生长发育无延滞现象(图 3C)。选择AmDREB1F表达量较低的组成型表达株系(OE-2和OE-28;T3代苗期生长延滞不明显) 和表达量较高的诱导表达株系(IE-2和IE-6) 进行耐逆性鉴定。

图 3 正常条件下AmDREB1F转基因株系的生长状况和转基因的表达量 Fig. 3 Growth status and the transgene's expression levels in transgenic lines of AmDREB1F. (A) Constitutive expression seedlings (24-day-old) before spraying GA3 (–GA) and after 20 d of spraying GA3 (+GA), respectively. (B) Expression levels of AmDREB1F in different constitutive expression lines. (C) The 14-day-old seedlings and the 32-day-old plants of the stress-inducible expression lines. WT: wild type; OE-2, OE-17 and OE-26: constitutive expression lines; IE-2 and IE-6: stress-inducible expression lines.
2.3.2 AmDREB1F转基因株系耐逆性的鉴定

(1) 耐旱性和氧化胁迫耐性的鉴定

种子萌发期鉴定结果(图 4) 表明,转基因株系与WT在1/2 MS培养基上的萌发状况相似,但在附加300 mmol/L或350 mmol/L甘露醇的1/2 MS培养基上,前者在萌发速度、胚根生长和子叶变绿上均快于后者(P < 0.05或P < 0.01),表明转基因株系耐渗透胁迫的能力比WT强。

图 4 AmDREB1F转基因株系种子萌发期耐旱性的变化 Fig. 4 Profiles of drought tolerance of the AmDREB1F transgenic lines at the seed germination stage. The phenotypes (A), germination rates (B) and root lengths (C) after 6 d of germination on different media, respectively. WT: wild type; OE-2 and OE-28: constitutive expression lines; IE-2 and IE-6: stress-inducible expression lines; * and ** represent significant differences between transgenic lines and wild type at P < 0.05 and P < 0.01 levels, respectively (the same below).

苗期耐旱性鉴定实验显示,在停止浇水2周后,幼苗出现萎蔫,18–19 d后严重萎蔫,此时恢复正常浇水,WT多数幼苗死亡且存活幼苗恢复生长速率较慢,而转基因株系多数幼苗存活且恢复生长速率较快。在复水10 d后,OE-2和IE-2株系的存活率分别为82.7%和78.3%,WT分别为21.8%和23.2%,差异极显著(图 5B5D5E)。

图 5 AmDREB1F转基因株系苗期耐旱性和氧化胁迫耐性的变化 Fig. 5 Profiles of drought and oxidative stress tolerances of the AmDREB1F transgenic lines at the seedling stage. (A–E) Eighteen-day-old seedlings were suspended watering for 18 d, and afterwards, were watered again in a recovery period. (A, C) Seedlings before the treatment. (B, D) Seedlings after 7 d of re-watering. (E) Survival rates of the seedlings measured on the 10th day after re-watering. (F–G) The DAB staining of and MDA contents in leaves of the seedlings after 10 d of suspending watering (0 d as the controls), respectively.

植物在逆境胁迫下常产生过量的活性氧(Reactive oxygen species,ROS),从而对细胞造成氧化损伤。H2O2和MDA是反映氧化胁迫损伤的重要生理指标,其积累量与损伤程度呈正相关[33]图 5F显示,干旱处理前(0 d) 转基因株系和WT叶片上只有很少的棕褐色染色斑,干旱处理10 d后二者的染色斑明显增加,尤其WT增加较多甚至出现片状染色,表明其H2O2的积累远多于转基因株系。从图 5G可见,在正常条件下,转基因株系与WT中MDA的含量均较低且很接近,在停水处理10 d后,二者的MDA含量均明显增加,尤其WT的增幅(2.0倍) 显著高于OE-2 (0.7倍) 和IE-2 (0.9倍) 株系(P < 0.01)。

(2) 耐盐性和氧化胁迫耐性的鉴定

如上所述,转基因株系与WT在1/2 MS培养基上的萌发状况无明显差异,但在含125 mmol/L或175 mmol/L NaCl的1/2 MS培养基上,前者的萌发状况优于后者(多数P < 0.05或P < 0.01) (图 6)。在苗期用浇NaCl溶液的方法进一步鉴定,发现转基因株系受伤害的程度比WT轻、存活率比WT高(OE-2株系P < 0.05)、H2O2和MDA的积累比WT少(P < 0.01或P < 0.05) (图 7)。

图 6 AmDREB1F转基因株系种子萌发期耐盐性的变化 Fig. 6 Profiles of salt tolerance of the AmDREB1F transgenic lines at the seed germination stage. The phenotypes (A), germination rates (B) and root lengths (C) after 6 d of germination on different media, respectively.
图 7 AmDREB1F转基因株系苗期耐盐性和氧化胁迫耐性的变化 Fig. 7 Profiles of salt and oxidative stress tolerances of the AmDREB1F transgenic lines at the seedling stage. Twenty-day-old seedlings were watered with 250 mmol/L NaCl solution once and then were watered again regularly with tap water. (A, C) Seedlings before the treatment. (B, D) Plants after 18 d of watering with the NaCl solution. (E) Survival rates of the seedlings on the 14th day after watering with the NaCl solution. (F–G) The DAB staining of and MDA contents in leaves of the seedlings after 5 d of watering with the NaCl solution (0 d as the controls), respectively.

(3) 耐冻性和氧化胁迫耐性的鉴定

将幼苗进行冷冻处理,处理结束时所有幼苗均呈现萎蔫水渍状,但转基因株系的症状比WT略轻。当放回到正常条件下继续培养时,只有少数WT幼苗存活且恢复生长较慢,而转基因株系的存活率显著高于WT (P < 0.01)且多数幼苗能较快恢复生长。此外,低温胁迫下转基因幼苗叶片中H2O2和MDA的积累比WT少(P < 0.05) (图 8)。

图 8 AmDREB1F转基因株系苗期耐冻性和氧化胁迫耐性的变化 Fig. 8 Profiles of freezing and oxidative stress tolerances of the AmDREB1F transgenic lines at the seedling stage. (A–E) Eighteen-day-old seedlings were exposed to –7 ℃ for 7 h after a pre-treatment at 4 ℃ for 24 h, then post-treated at 4 ℃ for 12 h again. Afterwards, the seedlings were returned to normal growth conditions for recovery. (A, C) Seedlings before the treatment. (B, D) Plants after 14 d of the treatment. (E) Survival rates of the seedlings on the 14th day after the treatment. (F–G) The DAB staining of and MDA contents in leaves of the seedlings after exposure to 4 ℃ for 48 h (0 h as the controls), respectively.

综上所述,AmDREB1F的组成型表达或诱导表达提高了转基因拟南芥对干旱、高盐和低温胁迫及其导致的次级氧化胁迫的耐性。

2.3.3 转基因株系中胁迫诱导基因的表达分析

DREB类转录因子通过激活或上调许多胁迫诱导基因的表达而起作用[3-5],为此我们检测了转基因株系中6个胁迫诱导基因AtRD29AAtRD29BAtCOR47AtP5CS1AtRAB18AtKIN1的表达变化,结果如图 9所示。在正常条件下,WT中这些基因低水平转录或检测不到其转录本,而组成型表达株系中所有基因都能检测到转录本,且除AtRAB18外其余基因的转录本明显可见。在甘露醇、NaCl和低温处理3 h后,所有基因在2组材料中的转录水平比在正常条件下高,且在转基因株系中的上调表达普遍比在WT中明显。这一结果表明AmDREB1F上调了转基因株系中胁迫诱导基因的表达。

图 9 AmDREB1F转基因株系中6个胁迫诱导基因的表达变化 Fig. 9 Profiles of expression patterns of 6 stress- inducible genes in the AmDREB1F transgenic lines. Twelve-day-old seedlings were exposed to osmotic stress (A), salt stress (B) and cold stress (C) for 3 h, respectively. The unstressed seedlings were used as controls.
3 讨论 3.1 AmDREB1F在耐逆性中的作用及调节机理

AmDREB1F是我们在前期通过RNA-seq技术从沙冬青中鉴定的低温和干旱诱导表达基因,编码CBF/DREB1型转录因子,为拟南芥AtDREB1F/DDF1/FTL1和水稻OsDREB1F在沙冬青中的同源基因[26]。本研究利用半定量RT-PCR进行表达分析,发现在沙冬青幼苗中AmDREB1F主要受低温和干旱失水胁迫的诱导,而受高盐和高温诱导均很微弱(图 2A)。在野外生长植株的嫩叶中,该基因在秋末、冬季和早春寒冷天气下的表达量远高于温热季节(图 2B)。由此看来AmDREB1F基因主要受低温胁迫的诱导,其次为干旱胁迫。这与其他植物DREB1F/DDF1基因的胁迫诱导模式存在较明显差异。例如,拟南芥AtDREB1F/DDF1/FTL1和菜豆Phaseolus vulgaris L. PvDREB1F基因主要受高盐和干旱或渗透胁迫的诱导,而受低温等其他非生物胁迫的诱导较小[12-14, 34];水稻OsDREB1F基因受低温、干旱和盐胁迫的诱导上调均较明显[17];大豆GmDREB1F;1基因主要受低温和高温胁迫的诱导[16]。将AmDREB1F基因在拟南芥中表达可以提高其耐旱性、耐冻性和耐盐性(图 4-8),类似的功能在AtDREB1F/DDF1/FTL1OsDREB1FGmDREB1F;1基因均有报道[12-14, 16-17],表明这类基因的耐逆功能在不同物种间的保守性较高(高于其胁迫诱导模式)。其原因之一可能在于DREB类转录因子具有相似的转录调节机制,可以激活启动子中含DRE/CRT元件的许多非生物胁迫诱导基因表达,使细胞形成复杂而相似的耐逆保护机制[3-5]。本研究对6个此类基因进行了表达分析发现,无论在正常还是胁迫条件下,它们在转基因株系中的表达量普遍高于野生型(图 9),从而为此观点提供了新的依据。这些基因编码亲水性晚期胚胎丰富蛋白(AtRD29AAtRD29BAtCOR47AtRAB18)、类抗冻蛋白(AtKIN1) 或脯氨酸合成酶(AtP5CS1),直接或间接地对细胞起保护作用,从而增强了植物的耐逆性[35-38]

ABA在植物抵抗逆境胁迫中扮演着重要角色,许多胁迫诱导基因,尤其是干旱和盐胁迫诱导基因的表达受ABA依赖的信号转导途径调控[39]。本研究未检测到AmDREB1F受外源ABA诱导表达(图 2A),推测其可能通过ABA非依赖的信号转导途径对靶基因进行转录调节。这与AtDREB1F/DDF1及其他植物的多数CBF/DREB1型基因相似[4-5, 13],而与OsDREB1FPvDREB1F不同,它们均受ABA明显诱导[17, 34],可能通过ABA依赖的信号转导途径发挥功能。

ROS是植物细胞的代谢产物,正常条件下因产量低而对植物细胞无毒害甚至为其所必需[33, 40]。干旱、高盐和低温等逆境胁迫常导致ROS过量产生,从而对膜脂、蛋白质和DNA等大分子造成氧化胁迫损伤。H2O2是一种活性和毒性中等但稳定性和扩散性较强的ROS。MDA是膜脂过氧化的产物,反过来又可与膜蛋白等发生交联而破坏膜的结构与功能,从而加重ROS对细胞的损伤[33, 40]。本研究发现,AmDREB1F可以降低逆境胁迫下转基因植株中H2O2和MDA的积累(图 5图 7图 8),提高其耐氧化胁迫能力。类似的结果在其同源基因AtDREB1F/DDF1/FTL1OsDREB1FVcDDF1GmDREB1F;1PvDREB1F中未见报道[12-14, 16-19]。推测这可能是AmDREB1F提高转基因植株耐逆性的重要生理基础。

3.2 AmDREB1F可能通过降低GA含量延缓生长发育

AtDREB1F/DDF1/FTL1GmDREB1F;1以及AtDREB1A等许多CBF/DREB1型基因在超表达时可导致转基因植株出现生长发育延滞甚至不能开花结籽的现象,外施GA3可消除此表型[5, 12, 14, 16, 41],使用AtRD29A等胁迫诱导型启动子也可避免此类现象发生[5]。本研究得到了类似结果(图 3),表明AmDREB1FAtDREB1F/DDF1/FTL1GmDREB1F;1等基因具有类似的调节生长发育的功能。

GAs是一类重要的植物促生长激素,可通过介导生长抑制因子DELLA蛋白的降解而促进植物的生长发育。AtDREB1F/DDF1AtDREB1ACBF/DREB1型基因的超表达可以减少活性GA的含量,引起DELLA蛋白的积累,从而抑制转基因植株的生长发育,利于增强其耐逆性[13, 41]。本研究虽然未测定GAs含量等相关指标的变化,但外施GA3可以消除转基因株系的生长延滞表型(图 3A),故此推测AmDREB1F也可能通过减少活性GA的含量而引起DELLA蛋白积累,从而导致转基因植株生长发育延滞。

参考文献
[1]
Wang HY, Wang HL, Shao HB, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci, 2016, 7: 67.
[2]
Baillo EH, Kimotho RN, Zhang ZB, et al. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes, 2019, 10(10): 771. DOI:10.3390/genes10100771
[3]
Xu ZS, Chen M, Li LC, et al. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Integr Plant Biol, 2011, 53(7): 570-585. DOI:10.1111/j.1744-7909.2011.01062.x
[4]
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 2012, 1819(2): 86-96. DOI:10.1016/j.bbagrm.2011.08.004
[5]
Agarwal PK, Gupta K, Lopato S, et al. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot, 2017, 68(9): 2135-2148. DOI:10.1093/jxb/erx118
[6]
Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.. Plant Cell Physiol, 2004, 45(8): 1042-1052. DOI:10.1093/pcp/pch118
[7]
Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics, 2010, 283(2): 185-196. DOI:10.1007/s00438-009-0506-y
[8]
Cui M, Zhang WJ, Zhang Q, et al. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiol Biochem, 2011, 49(12): 1384-1391. DOI:10.1016/j.plaphy.2011.09.012
[9]
Yang W, Liu XD, Chi XJ, et al. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta, 2011, 233(2): 219-229. DOI:10.1007/s00425-010-1279-6
[10]
Li XS, Zhang DY, Li HY, et al. EsDREB2B, a novel truncated DREB2-type transcription factor in the desert legume Eremosparton songoricum, enhances tolerance to multiple abiotic stresses in yeast and transgenic tobacco. BMC Plant Biol, 2014, 14: 44. DOI:10.1186/1471-2229-14-44
[11]
Yin YM, Jiang XX, Ren MY, et al. AmDREB2C, from Ammopiptanthus mongolicus, enhances abiotic stress tolerance and regulates fatty acid composition in transgenic Arabidopsis. Plant Physiol Biochem, 2018, 130: 517-528. DOI:10.1016/j.plaphy.2018.08.002
[12]
Magome H, Yamaguchi S, Hanada A, et al. Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J, 2004, 37(5): 720-729. DOI:10.1111/j.1365-313X.2003.01998.x
[13]
Magome H, Yamaguchi S, Hanada A, et al. The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J, 2008, 56(4): 613-626. DOI:10.1111/j.1365-313X.2008.03627.x
[14]
Kang HG, Kim J, Kim B, et al. Overexpression of FTL1/DDF1, an AP2 transcription factor, enhances tolerance to cold, drought, and heat stresses in Arabidopsis thaliana. Plant Sci, 2011, 180(4): 634-641. DOI:10.1016/j.plantsci.2011.01.002
[15]
Wang LB, Ma H, Lin J. Angiosperm-wide and family-level analyses of AP2/ERF genes reveal differential retention and sequence divergence after whole-genome duplication. Front Plant Sci, 2019, 10: 196. DOI:10.3389/fpls.2019.00196
[16]
Kidokoro S, Watanabe K, Ohori T, et al. Soybean DREB1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J, 2015, 81(3): 505-518. DOI:10.1111/tpj.12746
[17]
Wang QY, Guan YC, Wu YR, et al. Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol, 2008, 67(6): 589-602. DOI:10.1007/s11103-008-9340-6
[18]
Song GQ, Gao X. Transcriptomic changes reveal gene networks responding to the overexpression of a blueberry DWARF AND DELAYED FLOWERING 1 gene in transgenic blueberry plants. BMC Plant Biol, 2017, 17(1): 106. DOI:10.1186/s12870-017-1053-z
[19]
Walworth A, Song GQ. The cold-regulated genes of blueberry and their response to overexpression of VcDDF1 in several tissues. Int J Mol Sci, 2018, 19(6): 1553. DOI:10.3390/ijms19061553
[20]
王华, 贾桂霞, 丁琼. 沙冬青抗逆性研究进展与应用前景. 中国农学通报, 2005, 21(12): 121-125.
Wang H, Jia GX, Ding Q. Research progress of abiotic stress tolerant mechanisms and application prospect of Ammopiptanthus mongolicus Maxim. Chin Agric Sci Bull, 2005, 21(12): 121-125 (in Chinese). DOI:10.3969/j.issn.1000-6850.2005.12.034
[21]
林清芳, 王茅雁, 刘佳杰, 等. 沙冬青细胞与分子生物学研究进展. 植物遗传资源学报, 2010, 11(6): 793-797.
Lin QF, Wang MY, Liu JJ, et al. Research progress of cell and molecular biology of Ammopiptanthus. J Plant Genet Resour, 2010, 11(6): 793-797 (in Chinese).
[22]
Pang T, Ye CY, Xia XL, et al. De novo sequencing and transcriptome analysis of the desert shrub, Ammopiptanthus mongolicus, during cold acclimation using Illumina/Solexa. BMC Genomics, 2013, 14: 488. DOI:10.1186/1471-2164-14-488
[23]
Wu YQ, Wei W, Pang XY, et al. Comparative transcriptome profiling of a desert evergreen shrub, Ammopiptanthus mongolicus, in response to drought and cold stresses. BMC Genomics, 2014, 15(1): 671. DOI:10.1186/1471-2164-15-671
[24]
杨杞, 白肖飞, 高阳, 等. 沙冬青CBF/DREB1转录因子cDNA的克隆及序列分析. 基因组学与应用生物学, 2009, 28(6): 1043-1048.
Yang Q, Bai XF, Gao Y, et al. cDNA cloning of CBF/DREB1 transcription factor of Ammopiptanthus mongolicus and its sequence analysis. Genom Appl Biol, 2009, 28(6): 1043-1048 (in Chinese).
[25]
王学峰. 蒙古沙冬青AmDREB2AmRD22基因的功能研究[D]. 呼和浩特: 内蒙古农业大学, 2012.
Wang XF. Functional analyses of AmDREB2 and AmRD22 genes from Ammopiptanthus mongloicus[D]. Hohhot: Inner Mongolia Agricultural University, 2012(in Chinese).
[26]
董博, 王茅雁, 王学峰, 等. 沙冬青AmDREB1F基因的克隆与表达载体构建. 内蒙古大学学报(自然科学版), 2014, 45(4): 378-384.
Dong B, Wang MY, Wang XF, et al. Cloning and expression vector construction of AmDREB1F from Ammopiptanthus mongolicus. J Inner Mongolia Univ (Nat Sci Ed), 2014, 45(4): 378-384 (in Chinese).
[27]
李章磊, 高飞, 曹玉震, 等. 蒙古沙冬青AmDREB2.1基因的克隆及表达分析. 生物技术通报, 2015, 31(3): 108-114.
Li ZL, Gao F, Cao YZ, et al. Cloning and expression analysis of AmDREB2.1 in Ammopiptanthus mongolicus. Biotechnol Bull, 2015, 31(3): 108-114 (in Chinese).
[28]
张至玮, 李章磊, 高飞, 等. 蒙古沙冬青AmDREB2.2基因的克隆与植物表达载体构建. 湖北农业科学, 2015, 54(16): 4065-4069.
Zhang ZW, Li ZL, Gao F, et al. Cloning of AmDREB2.2 gene of Ammopiptanthus mongolicus and construction of its plant expression vector. Hubei Agric Sci, 2015, 54(16): 4065-4069 (in Chinese).
[29]
温小俊. 蒙古沙冬青15个候选抗逆基因表达分析及AmDREB1功能鉴定[D]. 呼和浩特: 内蒙古农业大学, 2015.
Wen XJ. Expression analysis of fifteen candidate stress-tolerant genes and functional identification of AmDREB1 from Ammopiptanthus Mongloicus[D]. Hohhot: Inner Mongolia Agricultural University, 2015(in Chinese).
[30]
Ren MY, Wang ZL, Xue M, et al. Constitutive expression of an A-5 subgroup member in the DREB transcription factor subfamily from Ammopiptanthus mongolicus enhanced abiotic stress tolerance and anthocyanin accumulation in transgenic Arabidopsis. PLoS ONE, 2019, 14(10): e0224296. DOI:10.1371/journal.pone.0224296
[31]
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc, 2007, 2(7): 1565-1572. DOI:10.1038/nprot.2007.199
[32]
Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, et al. Cadmium-induced subcellular accumulation of O2· and H2O2 in pea leaves. Plant Cell Environ, 2004, 27(9): 1122-1134. DOI:10.1111/j.1365-3040.2004.01217.x
[33]
Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 2010, 48(12): 909-930. DOI:10.1016/j.plaphy.2010.08.016
[34]
Konzen ER, Recchia GH, Cassieri F, et al. DREB genes from common bean (Phaseolus vulgaris L.) show broad to specific abiotic stress responses and distinct levels of nucleotide diversity. Int J Genom, 2019, 2019: 9520642.
[35]
Kurkela S, Franck M. Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol, 1990, 15(1): 137-144. DOI:10.1007/BF00017731
[36]
Puhakainen T, Hess MW, Mäkelä P, et al. Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Mol Biol, 2004, 54(5): 743-753. DOI:10.1023/B:PLAN.0000040903.66496.a4
[37]
Msanne J, Lin JS, Stone JM, et al. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes. Planta, 2011, 234(1): 97-107. DOI:10.1007/s00425-011-1387-y
[38]
Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15(2): 89-97. DOI:10.1016/j.tplants.2009.11.009
[39]
Agarwal PK, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant, 2010, 54(2): 201-212. DOI:10.1007/s10535-010-0038-7
[40]
He M, He CQ, Ding NZ. Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci, 2018, 9: 1771. DOI:10.3389/fpls.2018.01771
[41]
Suo HC, Ma QB, Ye KX, et al. Overexpression of AtDREB1A causes a severe dwarf phenotype by decreasing endogenous gibberellin levels in soybean [Glycine max (L.) Merr]. PLoS ONE, 2012, 7(9): e45568. DOI:10.1371/journal.pone.0045568