生物工程学报  2020, Vol. 36 Issue (11): 2459-2466
http://dx.doi.org/10.13345/j.cjb.200171
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

王莹, 张微, 李怡璇, 江芳, 黄婷婷, 于馨, 朱洪伟, 张兴晓
Wang Ying, Zhang Wei, Li Yixuan, Jiang Fang, Huang Tingting, Yu Xin, Zhu Hongwei, Zhang Xingxiao
应用改良庆大霉素保护试验检测肠炎沙门氏菌侵袭力表型
A modified gentamicin protection assay for detecting invasive phenotype of Salmonella enterica serovar Enteritidis
生物工程学报, 2020, 36(11): 2459-2466
Chinese Journal of Biotechnology, 2020, 36(11): 2459-2466
10.13345/j.cjb.200171

文章历史

Received: March 29, 2020
Accepted: May 26, 2020
应用改良庆大霉素保护试验检测肠炎沙门氏菌侵袭力表型
王莹1 , 张微2 , 李怡璇1 , 江芳1 , 黄婷婷1 , 于馨1,3 , 朱洪伟1,3 , 张兴晓1,3     
1. 鲁东大学 生命科学学院,山东 烟台 264025;
2. 北京市昌平区中西医结合医院,北京 102208;
3. 烟台市动物病原微生物与免疫学重点实验室,山东 烟台 264025
摘要:肠炎血清型沙门氏菌(Salmonella enterica serovar Enteritidis,SE)是引起肠炎和全身感染重要的沙门氏菌血清型之一,了解沙门氏菌侵袭力表型对阐明其感染致病机制至关重要。传统庆大霉素保护试验(GPA)存在通量低、重复性差等缺点。文中利用96孔细胞培养和多孔道移液的高通量优势,结合菌落分区微量滴板计数法改良了传统GPA试验方案。应用改良的GPA方法检测了16株SE菌株对非吞噬细胞(HT-29)的入侵表型和43株SE菌株对吞噬细胞(RAW264.7)的胞内复制表型。通过比较分析SE强、弱菌株JL228和LN248对吞噬细胞(RAW264.7)的侵袭力表型发现,改良的GPA得出的数据组内和组间变异系数低、数据重复性强,胞内复制表型也与显微观察结果相符。通过实践应用发现,改良的GPA方法具有通量高、重复性强、结果可靠兼具省时、省力等优点,可作为沙门氏菌菌株侵袭力表型检测的更新方案,为进一步阐明其致病机制提供了更科学有效的方法。
关键词庆大霉素保护试验    肠炎沙门氏菌    侵袭力表型    高通量    重复性    
A modified gentamicin protection assay for detecting invasive phenotype of Salmonella enterica serovar Enteritidis
Ying Wang1 , Wei Zhang2 , Yixuan Li1 , Fang Jiang1 , Tingting Huang1 , Xin Yu1,3 , Hongwei Zhu1,3 , Xingxiao Zhang1,3     
1. School of Life Sciences, Ludong University, Yantai 264025, Shandong, China;
2. Beijing Changping Hospital of Integrated Chinese and Western Medicine, Beijing 102208, China;
3. Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai 264025, Shandong, China
Abstract: Salmonella enterica serovar Enteritidis (SE) is one of the most important zoonotic pathogens that cause enteritis and systemic infection in animals and human. Understanding invasive capacities of SE isolates is of vital importance to elucidate pathogenesis of Salmonella infection. To improve the throughput capacity and repeatability of classical gentamicin protection assay (GPA), a modified PGA was developed by taking high-throughput advantage of 96-well cell plates and multichannel pipettes. In addition, drop plate technique rather than spread plate method was applied in the modified GPA protocol for bacterial enumeration. The modified GPA protocol was evaluated by phenotyping intracellular replication of a high virulent and a low virulent SE isolates, JL228 and LN248, in a phagocytic cell line RAW264.7. The protocol was then applied in invasive phenotype determination of 16 SE strains to non-phagocytes (HT-29) and the intracellular replication of 43 SE strains to phagocytes (RAW264.7). Significant lower intra-group and inter-group coefficient of variations of the modified GPA was observed, implying good repeatability and reproducibility over traditional protocol. Further, replication phenotypes were also correlated with those from direct observation by confocal microscopy. Collectively, the improved GPA protocol had advantages of high throughput capacity, good repeatability and reliability, it was also noticed that the protocol also represented a fast and labor-saving alternative scheme for the invasive phenotype determination of Salmonella Enteritidis, and providing reliable phenotype profiles for Salmonella-host interplay interpretation.
Keywords: gentamicin protection assay    Salmonella enterica serovar Enteritidis    invasive phenotype    high throughput    repeatability    

非伤寒沙门氏菌(Non-typhoidal Salmonella spp.,NTS)是引起多种动物和人沙门氏菌感染的重要肠杆菌科细菌,也是引起食品污染和食物中毒的重要原因之一[1-3]。其中,肠炎血清型沙门氏菌(Salmonella enterica serovar Enteritidis,SE)感染引起的鸡蛋相关沙门氏菌病(Egg-associated Salmonellosis,EaS)和食物中毒病例逐年上升,引起了人们的高度关注[4]。沙门氏菌对吞噬细胞和非吞噬细胞的侵袭是其建立感染的关键,鉴定沙门氏菌侵袭力表型对研究沙门氏菌的致病机制具有重要的意义[5-6]

目前,体外鉴定沙门氏菌侵袭力表型多采取庆大霉素保护试验(Gentamicin protection assay,GPA)[7-8]。该方法用庆大霉素处理沙门氏菌感染的细胞,杀灭胞外细菌,最终通过培养并统计胞内细菌数量反映菌株的侵袭力。因其简便易行,被广泛用于沙门氏菌侵袭力表型评价[9]。然而,传统的GPA试验多在12孔板或24孔细胞培养板上进行,通量小,操作时间长,重复性较差。在多菌株侵袭力表型分析或大量筛选毒力突变株的侵袭表型方面应用受限,此外,裂解液平板涂布和平板灌注的计数方法也存在着数据重复性差的缺点,影响试验结果。最近有研究者尝试用96孔细胞培养板改良GPA试验,以期提高检测通量,然而该方法的应用效果有待评价[10-11]。基于此,本研究应用96孔板进行沙门氏菌侵染,并结合细菌滴板计数和侵袭力数据聚类分析建立了改良的GAP试验,比较了改良GPA试验与传统方法的数据变异系数和试验便利性,并初步进行了应用效果评价,结果发现改良GAP方法具有通量高、可重复性强、省时高效等优点,优于传统方法,可用于检测肠炎血清型沙门氏菌侵袭力表型。

1 材料与方法 1.1 材料

43株沙门氏菌菌株由本实验室于2016-2018年在国内畜禽养殖、食品加工环节分离获得,经血清凝集试验鉴定为肠炎血清型。JL228(GFPuv)和LN248(GFPuv)均为本实验室构建的组成型表达绿色荧光蛋白的肠炎血清型沙门氏菌。大肠杆菌质控菌株ATCC® 25922、小鼠巨噬细胞RAW264.7 (ATCC®:TIB-71)、人结直肠腺癌细胞HT-29 (ATCC®:HTB-38)均为本室保存。DMEM为HyClone公司产品(货号:SH30022.01)。胎牛血清(FBS)为北京全式金生物技术公司产品(货号:FS101-02)。庆大霉素硫酸盐(货号:E003632)、DAPI (货号:D9542)和TritonTM X-100 (货号:X100)均购自Sigma-Aldrich公司。24孔和96孔细胞培养板分别购自Costar和Corning公司(货号分别为3524和3599)。

1.2 方法 1.2.1 细胞培养

RAW264.7和HT-29细胞以2×105、5×104细胞/孔的密度分别接种于24孔和96孔细胞培养板,在含10% FBS的DMEM培养基、5% CO2、37 ℃条件下过夜孵育至细胞汇合度达到80%。

1.2.2 沙门氏菌制备

肠炎沙门氏菌单菌落接种于5 mL LB培养基(1%胰蛋白胨、0.5%酵母提取物,1% NaCl,pH 7.2),37 ℃、180 r/min振荡培养10-12 h。活化的菌液按1:50比例进行二次接种活化2-3 h至对数生长期。测定菌液的OD600吸光度值,按照1 OD600=6×108 CFU/mL公式计算沙门氏菌浓度。用DMEM培养液将沙门氏菌稀释至5×106 CFU/mL。

1.2.3 改良GPA方法的建立

取小鼠致病力高、低表型的SE临床分离株JL228和LN248为受试菌株,检测每株菌对细胞的结合(Association)、入侵(Invasion)和细胞内复制(Replication) 3个表型。每个表型设置10个重复培养孔。改良的高通量GPA试验方案如下:细菌按感染复数(Multiplicity of infection,MOI)为20的比例加入96孔培养的细胞内,1 000 r/min、离心10 min,置于37 ℃、5% CO2培养箱中孵育30 min。磷酸盐缓冲液(PBS)充分清洗以去除游离细菌,取10个孔的细胞分别用200 μL 1% Triton X-100裂解细胞10 min,将细胞裂解液记为“Association”;随后向细胞孔内加入庆大霉素至终浓度100 μg/mL,继续培养1 h后,PBS清洗3次,按上述方法进行Triton X-100处理细胞,将细胞裂解液记为“Invasion”;向剩余10个细胞孔内加入庆大霉素至终浓度10 μg/mL,继续培养22.5 h后用PBS清洗,Triton X-100裂解处理,裂解液记为“Replication”。细胞裂解液中的细菌计数采用分区滴板培养法,取10 μL稀释裂解液在培养皿上分区滴板,每个分区重复5滴。静置数分钟后,37 ℃培养箱倒置过夜培养,菌落计数时取每个分区的平均菌落数。侵袭力表型用侵袭率表示,其中侵袭率=(菌落数×稀释比)×100%/投入细菌数。传统GPA方法按参考文献[12]所述步骤进行,重复试验5次。应用SPSS (v22.0)统计软件计算数据的变异系数,计算公式为:变异系数=(标准差/平均值)×100%。分别应用配对t检验方法和非配对t检验方法比较组内和组间变异系数差异显著性。

1.2.4 沙门氏菌巨噬细胞内复制表型的显微观察

SE临床分离株JL228(GFPuv)和LN248(GFPuv)感染RAW264.7细胞(MOI=20) 30 min,PBS充分清洗,加入终浓度100 μg/mL的庆大霉素,培养1 h后充分清洗以去除胞外细菌,加入终浓度为10 μg/mL的庆大霉素,继续培养22.5 h,PBS充分清洗后4%多聚甲醛低温固定30 min,PBS清洗后,DAPI染色,激光共聚焦观察RAW264.7细胞内细菌,并计算感染率。

1.2.5 沙门氏菌侵袭力表型检测

应用本研究所述改良庆大霉素保护试验进行肠道上皮细胞的入侵表型分析和巨噬细胞的入侵、胞内复制表型分析。应用K-means聚类分析方法对菌株的侵袭能力进行高、中、低分类。该算法以空间中K个菌株侵袭力数据为中心进行聚类,根据到中心的距离将其余数据重新划分到最近的簇,得到新的聚类中心。以此规律迭代,直至收敛,为菌株侵袭力表型分析提供统计学参考。

2 结果与分析 2.1 传统和改良GPA试验方法比较

沙门氏菌的巨噬细胞侵袭力决定其全身性感染的能力。应用传统和改良的GPA分别检测了小鼠高致病性SE菌株JL228和低致病性菌株LN248的巨噬细胞侵袭能力。结果发现,两种方法得出类似结果,在“结合”表型检测中,LN248菌落数显著高于JL228 (P < 0.001),而在“入侵”和“复制”平板上,JL228对应的菌落数则显著高于LN248 (P < 0.001) (图 1)。说明在侵染最初阶段,LN248能更有效地结合到RAW264.7细胞表面,但在随后入侵和细胞内复制阶段,JL228则更好地适应巨噬细胞内环境,实现高水平的胞内复制。质控菌株大肠杆菌ATCC® 25922可以结合巨噬细胞,但没有观察到巨噬细胞入侵和胞内复制,说明选择该菌株作为入侵和复制表型的质控菌较为合适。对比传统和改良GPA方法的检测数据可以发现,改良GPA方法组内变异系数和组间变异系数明显低于传统检测方法(P < 0.05),说明改良检测方案得出的组内和组间数据都更为整齐,生物学重复性优于传统的GPA试验方法(表 1图 2)。

图 1 传统与改良GAP方法检测JL228与LN248感染RAW264.7细胞侵袭表型 Fig. 1 Invasive capacities of JL228 and LN248 to RAW264.7 cell measured by traditional and modified GPA protocols. Significances of differences between groups were statistically compared and indicated with P values by unpaired Student's t-test. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
表 1 传统与改良GAP方法检测JL228与LN248感染RAW264.7细胞侵袭表型的变异系数 Table 1 Coefficient of variations of recovery rate data from the JL228 and LN248 infected RAW264.7 cells using traditional and modified GPA protocols
Protocol Isolate Association Invasion Replication
Intra-group Inter-group Intra-group Inter-group Intra-group Inter-group
Traditional JL228 34.75 39.93 23.16 37.28 20.90 44.57
LN248 24.95 43.21 43.55 38.40 29.41 30.38
Modified JL228 1.23 22.23 7.35 21.92 10.37 14.58
LN248 8.50 18.00 24.18 19.90 19.07 19.84
图 2 传统与改良GAP方法检测JL228与LN248感染RAW264.7细胞侵袭表型变异系数比较 Fig. 2 Comparison of coefficient of variation from invasive data by traditional and modified GPA protocols. Significances of differences between groups were statistically compared and indicated with P values. *: P < 0.05, **: P < 0.01, ***: P < 0.001.
2.2 巨噬细胞内复制表型验证

为了进一步验证改良GPA方法的准确性,应用组成型表达绿色荧光蛋白的SE菌株JL228(GFPuv)和LN248(GFPuv)分别感染RAW264.7细胞,激光共聚焦直接观察菌株的胞内复制能力。结果如图 3所示,经统计分析,JL228(GFPuv)感染细胞RAW264.7后其细胞组复制细胞数约为150,95%置信区间(Confidence interval,CI)为145-161。LN248(GFPuv)感染的细胞组复制细胞数为2,95% CI为0-4,明显低于JL228(GFPuv)感染组的细菌数。该结果与改良GPA方法检测的结果趋势一致,说明改良GPA方法结果准确可靠。

图 3 JL228与LN248感染RAW264.7细胞复制表型的GPA滴板结果与共聚焦显微观察 Fig. 3 Intracellular replication phenotypes of JL228 and LN248 in RAW264.7 cell observed by modified GPA on drop plate and confocal laser scanning microscopy (40×). Scale bar = 20 μm.
2.3 改良的GPA方法的应用

应用改良GPA试验方案检测了43株SE分离菌株对RAW 264.7细胞的入侵和胞内复制表型,此外,对16株SE分离株的上皮细胞HT-29入侵表型进行了检测。在实践操作方面,改良的检测方法在单块96孔细胞培养板上最多可同时检测32株菌株的体外侵袭表型,是传统方法(24孔板)的4倍,通量增加的同时,也节约了操作时间、节省了细菌培养平皿。从肠道上皮细胞侵袭力表型结果看,JS083、SD002、SD186等菌株入侵上皮细胞能力较高,其中以SD186入侵能力最强,其侵袭率可达到8%左右,SD001、SD127、JS071等菌株入侵细胞能力较差(图 4)。从巨噬细胞复制表型来看,JS071、SD006、SD003等沙门氏菌临床分离菌株对巨噬细胞RAW264.7细胞的入侵能力较强。SD003、JS071、SD007等菌株胞内复制能力较低,SD057、HLJ062、SD186等菌株胞内复制能力较高,其中SD186在吞噬细胞复制能力最强,24 h细胞内复制率超500%。有趣的是,我们发现,针对巨噬细胞RAW264.7而言,入侵能力高的菌株JS071反而胞内复制能力较低。通过上述结果可以发现,巨噬细胞入侵能力高的菌株(如JS083)胞内复制能力并不一定强。同样,胞内复制能力强的菌株(如SD001)入侵能力却极低。值得注意的是,肉鸡肝脏分离株SD186具有较高的体外上皮细胞入侵能力和巨噬细胞胞内复制水平。K均值聚类法将这些菌株侵袭力表型分成高、中、低3种表型,为这些菌株的表型和基因型关联分析研究提供了分型依据。

图 4 SE侵袭、胞内复制表型的聚类分型 Fig. 4 Phenotyping of SE invasion and intracellular replication capabilities. K-mean cluster analysis of invasion and intracellular replication rate of 43 SE isolates in RAW264.7 and invasion rate of 16 isolates in HT-29 cell identified high, medium and low phenotypes of these SE isolates.
3 讨论

在沙门氏菌感染过程中,对宿主细胞的吸附、入侵,特别是巨噬细胞内的存活能力是其成功建立感染的关键[13-15]。体外侵袭力表型检测因其简便易行,在细菌致病性评估方面优势明显。然而,传统GPA试验方案由于受细胞状态、细菌活力、操作者技术水平等影响,批内和批间数据差异较大,且试验通量小,在菌株样品量大时需要大量的人力和耗材。改良GPA试验在传统方法基础上作了如下改进:第一,采用96孔细胞培养板,在增加了检测通量基础上,配合多孔道移液器减少了人为操作误差和工作量;第二,菌落计数采用了滴板法替代了涂布法或灌注法,简化了细菌计数方案,也减少了细菌培养皿的使用;第三,在侵袭表型分类方面,采用了K-means聚类算法,提供了一种表型分类依据。改良的GPA方法经代表菌株评估、显微观察及初步应用,显示了良好的批内和批间重复性、操作便利性和高通量特征(图 1-4),可作为高通量分析SE菌株的体外侵袭力的首选方法,亦可作为亲本菌株多基因位点突变后侵袭表型检测的推荐方案。

对比检测数据的变异系数发现,改良GPA方法组内变异系数和组间变异系数虽然都明显低于传统检测方法(P < 0.05) (表 1图 2),但从总体数据结果看,组间变异系数仍高于组内变异系数,说明虽然改良方案数据生物学重复性优于传统的GPA试验方法,但批次间重复性仍是本检测方法的主要问题。增加单次检出量,尽可能在同一批次完成所有样本的检测是一个避免该问题的可行解决方案。单次多量检测方案确保了细胞状态、细菌活力、接种比例和人为干扰都趋近一致,避免了分批检测带来的批间差异。

肠炎沙门氏菌对肠道上皮细胞的入侵是肠道感染的前提条件,而巨噬细胞内的复制能力是其建立全身性感染的关键[16-19]。肠道上皮细胞、巨噬细胞的入侵和复制表型检测结果发现,部分菌株细胞入侵和胞内复制能力一致,如高入侵、复制能力的菌株SD186。但多数菌株入侵和复制表型差异较大,如入侵能力巨噬细胞强、但胞内复制能力较低的菌株JS071,入侵能力较低但胞内复制能力却较强的SD001等。这说明肠炎沙门氏菌的入侵能力,胞内复制能力之间并没有直接关联(图 4)。事实上,决定入侵和复制表型的关键在于沙门氏菌的3型分泌系统(Type 3 secretion system,T3SS)。沙门氏菌致病岛1 (Salmonella pathogenicity island 1,SPI-1)编码的T3SS在宿主细胞识别和细菌穿膜过程发挥作用,介导了对非吞噬细胞的入侵、诱导肠道炎症和肠道定殖[20-23]。而SPI-2编码的T3SS在沙门氏菌的巨噬细胞内存活、建立系统性感染具有重要的生物学功能[24]。根据侵袭力表型差异,我们也可推测毒力因子在不同菌株内的表达情况,为揭示毒力基因单核苷酸位点差异和调控机制提供一定参考[25-26]

综上所述,改良后庆大霉素保护试验具有通量高、重复性好、简便可靠等优点,结合聚类分析方法,可快速对大量菌株进行侵袭力分型,也可作为评估基因改变对其体外致病力影响的有力工具,为更广泛地研究细胞与宿主关系提供一个更加科学有效的方法。

参考文献
[1]
Acheson D, Hohmann EL. Nontyphoidal salmonellosis. Clin Infect Dis, 2001, 32(2): 263-269.
[2]
Feasey NA, Dougan G, Kingsley RA, et al. Invasive non-typhoidal Salmonella disease: an emerging and neglected tropical disease in Africa. Lancet, 2012, 379(9835): 2489-2499.
[3]
Gordon MA, Feasey NA, Nyirenda TS, et al. Nontyphoid Salmonella disease//Ryan ET, Hill DR, Endy TP, Eds. Hunter's Tropical Medicine and Emerging Infectious Diseases. 10th ed. London: Elsevier Inc., 2020: 500-506.
[4]
Gantois I, Ducatelle R, Pasmans F, et al. Mechanisms of egg contamination by Salmonella enteritidis. FEMS Microbiol Rev, 2009, 33(4): 718-738.
[5]
Dar MA, Mumtaz PT, Bhat SA, et al. New insight into Brucella infection and foodborne diseases[EB/OL]. [2020-03-15] https://www.intechopen.com/books/new-insight-into-brucella-infection-and-foodborne-diseases/immunopathogenesis-of-salmonellosis.
[6]
Shivcharan S, Yadav J, Qadri A. Host lipid sensing promotes invasion of cells with pathogenic Salmonella. Sci Rep, 2018, 8(1): 15501.
[7]
Tezcan-Merdol D, Ljungström M, Winiecka- Krusnell J, et al. Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol, 2004, 70(6): 3706-3714.
[8]
Aabo S, Christensen JP, Chadfield MS, et al. Development of an in vivo model for study of intestinal invasion by Salmonella enterica in chickens. Infect Immun, 2000, 68(12): 7122-7125.
[9]
Klein JA, Powers TSR, Knodler LA. Measurement of Salmonella enterica internalization and vacuole lysis in epithelial cells//Botelho R. Phagocytosis and Phagosomes. New York: Humana Press, 2017: 285-296.
[10]
Wu J, Pugh R, Laughlin RC, et al. High-throughput assay to phenotype Salmonella enterica typhimurium association, invasion, and replication in macrophages. J Vis Exp, 2014(90): e51759.
[11]
Hoffmann S, Walter S, Blume AK, et al. High-throughput quantification of bacterial-cell interactions using virtual colony counts. Front Cell Infect Microbiol, 2018, 8: 43.
[12]
Das S, Ray S, Ryan D, et al. Identification of a novel gene in ROD9 island of Salmonella Enteritidis involved in the alteration of virulence-associated genes expression. Virulence, 2018, 9(1): 348-362.
[13]
Huang KS, Fresno AH, Skov S, et al. Dynamics and outcome of macrophage interaction between Salmonella Gallinarum, Salmonella typhimurium, and Salmonella Dublin and macrophages from chicken and cattle. Front Cell Infect Microbiol, 2020, 9: 420.
[14]
Bernal-Bayard J, Ramos-Morales F. Molecular mechanisms used by Salmonella to evade the immune system. Curr Issues Mol Biol, 2018, 25: 133-168.
[15]
Vohra P, Vrettou C, Hope JC, et al. Nature and consequences of interactions between Salmonella enterica serovar Dublin and host cells in cattle. Vet Res, 2019, 50(1): 99.
[16]
Yue M, Schifferli DM. Allelic variation in Salmonella: an underappreciated driver of adaptation and virulence. Front Microbiol, 2014, 4: 419.
[17]
Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol, 2001, 2(4): 361-367.
[18]
van der Straaten T, van Diepen A, Kwappenberg K, et al. Novel Salmonella enterica serovar Typhimurium protein that is indispensable for virulence and intracellular replication. Infect Immun, 2001, 69(12): 7413-7418.
[19]
Roche SM, Holbert S, Trotereau J, et al. Salmonella typhimurium invalidated for the three currently known invasion factors keeps its ability to invade several cell models. Front Cell Infect Microbiol, 2018, 8: 273.
[20]
Haraga A, Ohlson MB, Miller SI. Salmonellae interplay with host cells. Nat Rev Microbiol, 2008, 6(1): 53-66.
[21]
van der Velden AWM, Lindgren SW, Worley MJ, et al. Salmonella pathogenicity island 1-independent induction of apoptosis in infected macrophages by Salmonella enterica serotype typhimurium. Infect Immun, 2000, 68(10): 5702-5709.
[22]
Lawhon SD, Khare S, Rossetti CA, et al. Role of SPI-1 secreted effectors in acute bovine response to Salmonella enterica serovar typhimurium: a systems biology analysis approach. PLoS ONE, 2011, 6(11): e26869.
[23]
Birhanu BT, Park NH, Lee SJ, et al. Inhibition of Salmonella typhimurium adhesion, invasion, and intracellular survival via treatment with methyl gallate alone and in combination with marbofloxacin. Vet Res, 2018, 49(1): 101.
[24]
Cerny O, Holden DW. Salmonella SPI-2 type Ⅲ secretion system-dependent inhibition of antigen presentation and T cell function. Immunol Lett, 2019, 215: 35-39.
[25]
Drecktrah D, Knodler LA, Galbraith K, et al. The Salmonella SPI1 effector SopB stimulates nitric oxide production long after invasion. Cell Microbiol, 2005, 7(1): 105-113.
[26]
Mokracka J, Krzymińska S, Ałtunin D, et al. In vitro virulence characteristics of rare serovars of Salmonella enterica isolated from sand lizards (Lacerta agilis L.). Antonie Van Leeuwenhoek, 2018, 111(10): 1863-1870.