生物工程学报  2020, Vol. 36 Issue (10): 2151-2161
http://dx.doi.org/10.13345/j.cjb.200109
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

辜玉萍, 陈蕾, 李千音
Gu Yuping, Chen Lei, Li Qianyin
沉默PPP3CA对后肾间充质细胞MET转化、凋亡、增殖及迁移的影响
PPP3CA silence regulates MET process, cell apoptosis, proliferation and migration in metanephric mesenchyme cells
生物工程学报, 2020, 36(10): 2151-2161
Chinese Journal of Biotechnology, 2020, 36(10): 2151-2161
10.13345/j.cjb.200109

文章历史

Received: March 9, 2020
Accepted: June 17, 2020
沉默PPP3CA对后肾间充质细胞MET转化、凋亡、增殖及迁移的影响
辜玉萍1 , 陈蕾2 , 李千音1     
1. 重庆医科大学 检验医学院教育部重点实验室,重庆 400016;
2. 第三军医大学第一附属医院,重庆西南医院输血科,重庆 400038
摘要:肾脏是人体重要器官,肾脏发育对肾脏的形成和功能至关重要,其中后肾间充质细胞(Metanephric mesenchyme,MM)间质-上皮转化(Mesenchymal-epithelial transition,MET)是肾单位形成的关键环节。qRT-PCR和Western blotting实验检测蛋白质磷酸酶3催化亚基α (Protein phosphatase 3 catalytic subunit alpha,PPP3CA)在不同状态MM细胞株mK3、mK4中的表达谱及对MET标志蛋白调控作用;采用慢病毒包装方式构建稳定敲低PPP3CA的mK4细胞株;采用CCK-8、EdU实验、细胞划痕实验、流式细胞技术分别检测PPP3CA对上皮样后肾间充质细胞株mK4细胞生长、迁移、凋亡的调控作用。PPP3CA在mK4细胞中表达量较间质样后肾间充质细胞mK3更高,敲低PPP3CA后,检测MET标志物及细胞生物学行为,结果显示敲低PPP3CA显著上调上皮细胞标志物E-cadherin表达,促进MET过程,且促进细胞凋亡,抑制细胞增殖和迁移。此外,敲低PPP3CA促进ERK1/2磷酸化,提示PPP3CA生物学功能的调控机制可能与其去磷酸化ERK1/2蛋白相关。以上结果提示PPP3CA在MM细胞MET转化和生物学行为调节中发挥重要功能,为发现和解析肾发育过程中潜在的关键调节因子提供了新的理论基础。
关键词PPP3CA    间质-上皮转化    细胞凋亡    细胞增殖    细胞迁移    
PPP3CA silence regulates MET process, cell apoptosis, proliferation and migration in metanephric mesenchyme cells
Yuping Gu1 , Lei Chen2 , Qianyin Li1     
1. The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China;
2. Blood Transfusion Department, The First Hospital Affiliated to AMU, Southwest Hospital of Chongqing, Chongqing 400038, China
Abstract: Kidney is one of the most important organs of the body and the mammalian kidney development is essential for kidney unit formation. The key process of kidney development is metanephric development, where mesenchymal-epithelial transition (MET) plays a crucial role. Here we investigated the biological function of PPP3CA in metanephric mesenchyme (MM) cells. qRT-PCR and Western blotting were used to detect PPP3CA and MET makers expression in mK3, mK4 cells respectively at mRNA and protein level. Subsequently, PPP3CA was stably knocked down via lentivirus infection in mK4 cells. Flow cytometry, EdU/CCK-8 assay, wound healing assay were conducted to clarify the regulation of PPP3CA on cell apoptosis, proliferation and migration respectively. PPP3CA was expressed higher in epithelial-like mK4 cells than mesenchyme-like mK3 cells. Thus, PPP3CA was silenced in mK4 cells and PPP3CA deficiency promoted E-cadherin expression, cell apoptosis. Moreover, PPP3CA knock down attenuated cell proliferation and cell migration in mK4 cell. The underlying mechanism was associated with the dephosphorylation of PPP3CA on ERK1/2. Taken together, our results indicated that PPP3CA mediated MET process and cell behaviors of MM cells, providing new foundation for analyzing potential regulator in kidney development process.
Keywords: PPP3CA    mesenchymal-epithelial transition (MET)    cell apoptosis    cell proliferation    cell migration    

众所周知,肾脏是人体重要而复杂的器官,在体内完成多种生理功能,如代谢废物排泄、水和电解质平衡、酸碱平衡和血压维持。肾单位是肾脏执行这些生理学功能的基础[1-2]。在哺乳动物后肾发育过程中,肾单位的形成主要由输尿管芽(Ureteric bud,UB)与后肾间质(Metanephric mesenchyme,MM)细胞的相互作用决定[3-4]。在MM细胞的诱导下,从胚胎第10.5天(E10.5)到E11.0天开始,UB开始生长和分枝,MM细胞聚集在UB的分枝尖端,形成帽状间充质,帽状间充质中的肾祖细胞增殖分化,引起聚集形成(Pre-tubular aggregate,PA)[5]。随后,PA和UB分别进行MET和小管生成形成肾单位[6]。这些报道表明MM细胞是肾单位产生的原始细胞,在肾脏发育过程中与UB发生诱导作用[7-8]。此外,MM细胞的自我更新(增殖)和消耗决定了肾单位的形成和补给[8-9]。因此,MM细胞的增殖、凋亡和迁移在肾脏发育研究中显得尤为重要。

钙调磷酸酶是一种钙依赖的丝氨酸/苏氨酸磷酸酶,可以通过去磷酸化底物,参与调节机体的多种生理功能和生命活动[10]。钙调磷酸酶将细胞内的钙信号与多种细胞响应紧密联系,如T细胞激活、囊泡运输、细胞生长和凋亡[11-12]。此外,钙调磷酸酶在发育过程中也发挥重要功能,可以通过促进胚胎干细胞(Embryonic stem cell,ESC)间质上皮转化(Mesenchymal-Epithelial transition,MET),促进ESC分化,从而调节ESC自我更新和不同谱系之间的平衡[13]。PPP3CA是钙调磷酸酶催化亚基A (Calcineurin A,CNA)的一种亚型,在发育过程中至关重要,Ppp3ca-/-小鼠表现出神经系统发育缺陷和骨密度下降,而临床样本同样显示Ppp3ca基因移码突变与早发型癫痫和神经发育迟缓密切相关[12, 14-15]。有趣的是,钙调磷酸酶在肾脏疾病中也发挥重要功能,一方面,钙调磷酸酶抑制剂如他克莫司(Tacrolimus,TAC)被广泛应用于肾移植后的免疫抑制,以保证肾移植病人存活率,其中PPP3CA核酸多态性对肾移植后的免疫抑制具有调节作用;另一方面,PPP3CA钙调磷酸酶活性可被MicroRNA-30家族抑制,导致MicroRNA-30下游预测靶蛋白被激活,造成肾脏足细胞损伤[16-17]

但是,PPP3CA在肾脏发育过程中的作用及其对肾发育过程中细胞命运的影响还鲜有报道。因此,本研究旨在探讨PPP3CA在肾发育过程中MM细胞中的调节功能,初步阐述PPP3CA对MM细胞生物学行为的影响。我们在后肾间充质细胞株mK4中干预PPP3CA后,检测MET蛋白标志物、细胞凋亡、增殖和迁移。结果表明,敲低PPP3CA后显著促进MET转化和细胞凋亡,抑制细胞增殖和迁移,同时上调ERK1/2蛋白磷酸化水平,提示PPP3CA可能是MM细胞命运及MET过程的潜在调节因子。

1 材料与方法 1.1 材料 1.1.1 细胞系

人胚肾上皮细胞系293FT、小鼠MM细胞系mK3 (未诱导性后肾间充质细胞系)和mK4 (诱导性后肾间充质细胞系,具有诱导UB分枝能力)为本实验室早期引进,在实验室长期保存[18-19]

1.1.2 实验试剂

无内毒素质粒中提试剂盒购自康为世纪生物科技有限公司;PierceTM BCA Protein Assay Kit蛋白定量试剂盒购自Thermo Scientific公司;GibcoTM DMEM高糖细胞培养液购自Thermo Scientific公司;胎牛血清FBS购自Bioind公司;胰蛋白酶(Trypsin)、青链霉素双抗(PS)购自Invitrogen公司;RNA提取试剂Trizol、RNA逆转录试剂盒、蛋白浓度测定试剂盒均购自Thermo Scientific公司;PPP3CA rabbit pAb抗体购自Proteintech公司;E-cadherin rabbit pAb抗体购自Bioworld及Abclonal公司;p-ERK1/2 rabbit mAb及ERK1/2 rabbit mAb抗体购自Cell Signaling Technology公司;pAKT rabbit pAb抗体购自Bimake公司;p-JNK抗体购自Santa Cruz公司;Goat anti-rabbit IgG-HRP及Goat anti-mouse IgG-HRP购自康为世纪公司;Goat anti-rabbit R488荧光二抗购自Invitrogen公司;DAPI染色液及抗荧光淬灭剂购自生工生物工程(上海)股份有限公司;Western blotting显影液购自常州天地人和公司;CCK-8试剂盒购自MCE公司;EdU细胞增殖试剂盒购自广州锐博生物技术有限公司;U0126抑制剂购自MCE公司;其他试剂均为Sigma分析纯。

1.2 实验方法 1.2.1 慢病毒包装质粒构建

通过引物合成获得PPP3CA shRNA对应DNA单链,20 μmol/L前后引物各5 μL,加ddH2O补齐至50 μL,利用95 ℃水浴锅自然冷却进行退火,形成DNA双链。DNA双链及pLKO.1载体均在AgeⅠ和EcoRⅠ限制性内切酶位点行双酶切,接着用T4 DNA连接酶进行连接,构建pLKO.1-shRNA- PPP3CA重组质粒(简称sh-3CA)。

1.2.2 细胞培养和慢病毒包装感染

293FT、mK4或mK3细胞培养于DMEM高糖培养液中,内含10%胎牛血清及1 000 μg/mL青霉素和1 000 μg/mL链霉素,置于37 ℃、5% CO2饱和100%湿度的培养箱中培养,2 d传代。当10 cm培养皿中293FT细胞生长至70%-80%密度时,利用120 μL PEI共转染慢病毒目的质粒(pLKO.1- shRNA) (20 μg)、骨架质粒PSPA (15 μg)和PMD2G (5 μg),10 h后换液,48 h后收取病毒,0.45 μm滤器过滤细胞碎片。将对数期生长的mK4细胞接种于6孔板,60%-70%生长密度时,加入病毒液1.5 mL,完全培养液0.5 mL,加入病毒感染试剂聚凝胺至终浓度8 μg/mL,24 h换液,48 h后加入嘌呤霉素(Puromycin),终浓度10 μg/mL筛选成感染shRNA的mK4细胞。在收取细胞前24 h进行U0126 (15 μmol/L)处理,以DMSO溶剂为对照。

1.2.3 RNA提取及qRT-PCR实验检测基因mRNA水平变化

待6孔板细胞生长至密度约80%-90%,总RNA用Trizol法进行提取,并按照逆转录试剂盒说明书,选择oligodT为逆转录引物,进行逆转录获得cDNA。目的基因的mRNA表达水平利用SYBR进行qRT-PCR检测。

1.2.4 Western blotting检测基因蛋白水平变化

mK4细胞生长至密度90%时,弃培养液,用预冷1×PBS迅速清洗3次,加入1% SDS蛋白裂解液进行蛋白提取,随后95 ℃煮沸10 min,13 300 r/min离心10 min,取上清即为蛋白提取物。使用BCA试剂盒,按照说明书进行蛋白浓度测定,随后根据待检测蛋白丰度决定上样量,加入5×SDS上样缓冲液,95 ℃煮沸10 min进行蛋白变性。转膜采用湿转法,300 mA,0.45 μm PVDF膜,采用5%脱脂牛奶常温封闭2 h;采用3%脱脂牛奶稀释一抗(稀释比例1︰1 000),在4 ℃脱色摇床一抗孵育过夜;洗膜时间均为3次,每次10 min;3%脱脂牛奶稀释二抗(Goat anti-rabbit IgG-HRP 1︰3 000稀释,Goat anti-mouse IgG-HRP 1︰2 000),二抗常温孵育1 h,使用ECL显影液在凝胶成像系统进行成像。

1.2.5 流式细胞技术检测细胞凋亡

将对数期生长的mK4细胞,每孔约3×105个细胞接种在6孔板中,经24 h培养至细胞密度约80%-90%,消化细胞,特别注意勿过度消化,造成细胞损伤,用1×PBS温和清洗2次后,轻柔重悬于200 μL PBS中,送往重庆医科大学生命科学院流式平台进行Annexin V-FITC/PI流式凋亡检测。

1.2.6 CCK-8及EdU实验检测细胞增殖

将对数期生长的mK4细胞,每孔2×103个细胞接种在96孔板中,每组5个重复孔,接种4块相同96孔板,分别在接种细胞后4-5 h (细胞刚刚贴壁,以观测组内及组间起始细胞数目是否一致),24 h、48 h、72 h按CCK-8试剂盒说明书进行检测[20]。简言之,在不同时间点,小心弃培养液,将CCK-8试剂与完全培养液按照每10 μL/100 μL比例混合后,每孔加入110 μL混合液,细胞培养箱孵育2 h,酶标仪检测OD450。EdU增殖实验中,每组接种3个副孔,每孔2×103个细胞,48 h后加入EdU试剂,细胞培养箱孵育2 h,按照试剂盒说明书进行EdU检测和图片采集[21]

1.2.7 细胞划痕实验检测细胞迁移

取对数期生长的mK4细胞,按每孔3×105个细胞接种于6孔板,经24 h培养至细胞密度约80%-90%,更换无血清培养液,饥饿培养12 h,用200 μL移液管尖在每孔底部左、中、右各划一条直线,均匀用力,划线宽度均一。1×PBS清洗3次后,加入无血清培养液2 mL,分别在划痕后0 h、24 h、48 h将培养板置于倒置荧光显微镜下拍照。

1.2.8 细胞免疫荧光

将24孔板无菌细胞爬片置于24孔板,取5×104个对数期mK4细胞接种于爬片上,在完全培养液中培养8-12 h,待细胞完全贴壁后,弃培养液,加入4%多聚甲醛常温固定30 min,1×PBS洗涤3次,每次3 min;加入0.2% Triton X-100 1×PBS孵育10 min,1×PBS洗涤3次,每次3 min;加入10% BSA于4 ℃封闭过夜;5% BSA稀释一抗(稀释比例:1︰100),50 μL/爬片,4 ℃湿盒过夜孵育;1×PBST (0.02% Tween-20 1×PBS)洗涤4次,每次5 min;5% BSA稀释荧光二抗(稀释比例1︰100),50 μL/爬片,常温孵育1 h;1×PBST洗涤4次,每次5 min;1×PBS稀释DAPI (1︰5 000),常温孵育5 min,1×PBS洗涤3次,每次3 min;按15 μL/爬片滴加抗荧光淬灭剂至载玻片,中性树脂封片,及时进行荧光图片采集或4 ℃湿盒暂存。

1.2.9 数据统计

实验数据计量资料以平均数±标准差(x±s)形式表示,显著性差异分析用GraphPad软件进行。两独立样本间采用t检验进行比较,检验水准α=0.05。

2 结果与分析 2.1 PPP3CA高表达于小鼠诱导性后肾间充质细胞mK4

在课题组前期研究中,我们对小鼠肾发育过程中的后肾间充质细胞株mK3 (未分化间质样)和mK4 (经诱导部分分化,趋于上皮样)进行蛋白质谱分析,发现PPP3CA表达量在mK4细胞株中相较mK3细胞株更高。因此,我们在mRNA和蛋白水平同时检测Ppp3ca基因表达,结果如图 1所示,以未诱导性mK3细胞为对照,在诱导性的mK4细胞中,上皮标志基因Cdh1高表达,间质标志基因VimentinTwist1低表达;Ppp3ca基因mRNA及蛋白均相对高表达于mK4细胞,而低表达于mK3细胞。此结果提示PPP3CA可能在间质-上皮转化中发挥某些生物学功能。

图 1 PPP3CA在小鼠后肾间充质细胞mK3及mK4中的表达情况 Fig. 1 Expression of PPP3CA in mouse metanephric mesenchyme cells. (A) qRT-PCR was carried out to detect Ppp3ca and the marker genes of MET process at mRNA level in metanephric mesenchyme cell mK3 and mK4 cell line, including Cdh1, Vimentin, Twist1 normalized to the internal control 18S rRNA. (B) Western blotting was used to detect PPP3CA and marker protein E-cadherin in MET process. (C) The protein expression was calculated by scanning gray in Image J software normalized to the internal control β-actin and data was displayed with error bars representing x±s (n=3). ***: P < 0.001; **: P < 0.01 (unpaired t-test).
2.2 敲低PPP3CA促进mK4细胞MET转化

基于PPP3CA在mK4细胞中高表达,为了进一步探究其在mK4细胞中的生物学功能,我们通过慢病毒包装侵染的方式,构建稳定敲低PPP3CA的mK4细胞株。qRT-PCR和Western blotting分别检测MET过程相关标志基因在mRNA和蛋白水平的变化,结果显示敲低PPP3CA后,上皮标志基因Cdh1 mRNA较对照组表达上调,差异显著,间质标志基因Vimentin mRNA表达水平下降,差异有统计学意义(图 2A)。蛋白检测结果也同样显示PPP3CA敲低组E-cadherin表达水平较对照组上调,且差异具有统计学意义(图 2B-C)。同时,免疫荧光检测也显示敲低PPP3CA可以显著上调E-cadherin表达水平(图 2D-E)。此结果提示沉默PPP3CA促进mK4细胞向上皮转化。

图 2 PPP3CA对mK4细胞MET过程影响 Fig. 2 Effects of PPP3CA on MET process of mK4 cells. (A) qRT-PCR was used to detect mRNA expression of genes related to MET process, normalized to the internal control 18S rRNA. (B) Western blotting was conducted to detect epithelial marker E-cadherin. (C) The protein expression in Fig. 2B was quantified the same way as in Fig. 1C normalized to β-actin. (D) MET marker E-cadherin expression was detected by immunofluorescence and the E-cadherin-positive cell was stained in green and nucleus was stained in blue by DAPI. (E) The relative fluorescence of E-cadherin in Fig. 2D was quantified by Image J software. ***: P < 0.001; **: P < 0.01; *: P < 0.05 (unpaired t-test).
2.3 敲低PPP3CA促进mK4细胞凋亡

在肾单位形成过程中,除MM细胞向上皮细胞分化为关键过程,MM细胞自我消耗和更新以维持UB尖端足够的肾祖细胞群是肾单位形成的来源[5]。钙调磷酸酶在细胞命运调节方面具有重要作用,因此为了探讨PPP3CA作为CNA的一种亚型,对于mK4细胞凋亡的影响,我们进行了Annexin V-FITC/PI双染细胞凋亡流式检测。如图 3A所示,敲低PPP3CA后,早期凋亡率(LR)为11.04%,显著高于对照组3.09%,差异有统计学意义,早期(LR)和晚期(UR)总凋亡率17.14%,较对照组7.56%总凋亡率显著增加(图 3)。此结果提示PPP3CA对mK4细胞凋亡具有显著抑制作用。

图 3 PPP3CA对mK4细胞凋亡的影响 Fig. 3 Effects of PPP3CA on cell apoptosis of mK4 cells. (A) Cell apoptosis was detected by flow cytometry with Annexin-FITC/PI staining. The number of positive cells double stained by AnnexinV-FITC/PI in mK4 cells. (B) Apoptosis rates (early apoptosis LR+late apoptosis UR) of mK4 cells detected in Fig. 3A were respectively quantified. Results were displayed with x±s (n=3). ***: P < 0.001 (unpaired t-test).
2.4 敲低PPP3CA抑制mK4细胞增殖

为了探究PPP3CA对细胞增殖的影响,我们在sh-3CA稳定敲低的mK4细胞株中采用CCK-8和EdU两种方法同时检测细胞增殖,EdU结果显示,敲低PPP3CA后,Apollo着色的EdU阳性增殖的细胞占总细胞的比例较对照组下降,且差异具有统计学意义(图 4A-B);CCK-8结果显示,在细胞培养72 h后,敲低PPP3CA组细胞存活受到显著抑制(图 4C)。提示PPP3CA在mK4细胞中发挥促增殖作用。

图 4 PPP3CA对mK4细胞增殖的影响 Fig. 4 Regulation of PPP3CA on cell proliferation of mK4 cells. (A) Proliferating cells were labeled with EdU stained by Apollo (red) and the whole cells were labeled with Hoechst (blue) in PPP3CA-knock-down mK4 cells; the pictures were taken by Leica DMI8 fluorescent microscopy (100×) with a scale bar of 200 μm. (B) Calculate the EdU-positive cell ratio in 5 random images and the results were showed with x±s (n=3); ***: P < 0.001; *: P < 0.05. (C) Cell viability was detect by CCK-8 24 h, 48 h, 72 h post-seeded into 96-well plate and the data was displayed with x±s (n=3).
2.5 敲低PPP3CA抑制mK4细胞迁移

为探究PPP3CA对mK4细胞迁移的调节作用,通过细胞划痕实验检测发现,划痕48 h后,PPP3CA稳定敲低的mK4细胞、sh-CTL对照组细胞相对细胞迁移率分别为0.433±0.041、1.133±0.061 (图 5),显示敲低组细胞迁移能力显著被抑制。提示PPP3CA在mK4细胞中发挥促迁移功能。

图 5 PPP3CA对mK4细胞迁移的影响 Fig. 5 The migration of mK4 cells with PPP3CA deficiency. (A) Cell migration was measured by wound healing assay in PPP3CA-deficient mK4 cells: take pictures and calculate the wound width at three points (0 h, 24 h, 48 h) after wound. (B) The wound healing ratio (healing width/initial wound width) was quantified and data was exhibited with x±s (n=3). ***: P < 0.001; *: P < 0.05 (unpaired t-test).
2.6 敲低PPP3CA上调ERK1/2磷酸化水平

为探究PPP3CA调控间充质细胞MET过程、增殖、凋亡的可能机制,在mK4细胞中敲低PPP3CA,进行Western blotting检测p-ERK1 (Thr202/Tyr204)/p-ERK1 (Thr185/Tyr187)磷酸化水平及相应总蛋白水平。结果显示PPP3CA沉默后相对p-ERK水平为2.417±0.040,对照组1.000±0.006,即敲低PPP3CA增加p-ERK表达,差异有统计学意义(图 6A-B)。同时,在与细胞凋亡、增殖或MET相关的MAPK信号通路和AKT信号通路中,选取丝氨酸/苏氨酸磷酸化依赖的关键调控分子进行通路筛选性检测,结果发现PPP3CA并不影响p-AKT S473及p-JNK T183/Y185磷酸化水平(图 6C)。此结果提示PPP3CA可能作为丝氨酸/苏氨酸依赖的钙调磷酸酶,去磷酸化p-ERK1/2,而敲低PPP3CA有效抑制此负向调节,从促使p-ERK1/2水平显著上升。

图 6 PPP3CA调控ERK1/2磷酸化 Fig. 6 Regulation of PPP3CA on the phosphorylation of ERK1/2 in mK4 cells. (A) PPP3CA was knocked down through lentivirus infection and Western blotting was carried out to detect protein ERK1/2 at phosphorylation and total protein level. (B) The protein expression in Fig. 6A was quantified the same way as in Fig. 1C normalized to the internal control GAPDH. ***: P < 0.001 (unpaired t-test). (C) pAKT S473 and p-JNK T183/Y185 level was detected in mK4 cell treated with PPP3CA shRNA compared with the control.
2.7 抑制ERK1/2磷酸化回复PPP3CA沉默表型

为了进一步验证PPP3CA通过调节ERK1/2磷酸化水平影响MET过程和细胞生存能力,在敲低PPP3CA后,使用抑制剂U0126 (选择性的MEK1/2抑制剂)处理mK4细胞,抑制ERK磷酸化,流式细胞术检测细胞凋亡比例和上皮标志蛋白E-cadherin表达。结果显示,以DMSO为溶剂对照,U0126下调敲低PPP3CA的mK4细胞中ERK磷酸化水平(图 7C),有效削弱PPP3CA敲低导致的mK4细胞凋亡(图 7A-B)及E-cadherin表达上调(图 7C)。

图 7 PPP3CA通过上调p-ERK1/2促进mK4细胞凋亡和MET过程 Fig. 7 PPP3CA promoted cell apoptosis and EMT process through upregulating p-ERK/2 level in mK4 cell. (A) U0126 was added into PPP3CA-knocked down mK4 cell with the final concentration of 15 μmol/L and cell apoptosis was detected by flow cytometry with Annexin V-FITC/PI staining. (B) Apoptosis rates (early apoptosis LR+late apoptosis UR) in Fig. 7A were respectively quantified compared with the control. ***: P < 0.001 (unpaired t-test). (C) p-ERK1/2 and E-cadherin level was detected through Western blotting in mK4 cell treated with PPP3CA shRNA and U0126 compared with the control.
3 讨论

在哺乳动物后肾发育过程中,MM细胞自我更新、消耗(细胞增殖、凋亡),向UB迁移,在UB的诱导下,MM细胞在UB尖端聚集,相互诱导,进行MET转化等一系列过程,最终分化为肾小球的肾小球囊和肾单位的管状结构;同时,UB也被趋近的MM细胞诱导分化形成集合管和输尿管。在MM细胞趋向UB并相互诱导过程中,MM细胞凋亡、增殖和迁移及MET转化必不可少[5-8]。而后肾发育过程中的MET过程调控网络复杂,其中,经典的调控通路包括Wnt/β-catenin经典和非经典信号通路、Notch信号通路、BMP信号通路和FGF信号通路等[22]。近期研究发现,MAPK/ERK信号激活对肾祖细胞群的维持和肾前体细胞分化两个过程必不可少,MAPK/ERK活性缺失会导致肾单位分化受阻[23-24]

在此我们聚焦CAN亚型PPP3CA在后肾间充质细胞中生物学功能,发现敲低PPP3CA上调E-cadherin表达,促进mK4细胞MET转化(图 1-2)。已有文献报道,钙调磷酸酶可以通过丝氨酸/苏氨酸依赖的钙调磷酸酶活性调节NFAT磷酸化水平,影响其核转位,从而激活钙调磷酸酶-NFAT信号通路,下调E-cadherin表达,促进ESC细胞EMT转化,调控胚胎干细胞的自我更新和分化[13]。此外,PPP3CA沉默后促进mK4细胞凋亡(图 3),也有研究表明在泌尿上皮肿瘤细胞中,PPP3CA受miR-145靶向转录后调控,表达下调,细胞凋亡明显增加[25-26]。而在多发性骨髓瘤细胞中,敲低PPP3CA可以抑制细胞生长[27],这与本研究结果中PPP3CA对mK4细胞(诱导性MM细胞)增殖的抑制作用具有一致性(图 4)。同时,在喉部鳞状细胞癌细胞Tu-177中,PPP3CA受miR-145-5p靶向调控,mRNA水平显著下降,细胞增殖被显著抑制,从而发挥miR-145-5p抗肿瘤效应[28]。最后,我们的研究还发现shRNA干预PPP3CA后mK4细胞迁移能力受到明显抑制(图 5)。以往研究表明,在肺动脉平滑肌细胞中,钙调磷酸酶抑制剂CsA显著抑制细胞迁移,从而回复MCT诱导的细胞迁移增加[29]。也有研究显示,在羟基类固醇脱氢酶2 (Hydroxysteroid dehydrogenase like 2,HSDL2)敲低的甲状腺癌细胞中,作为HSDL2潜在靶基因,PPP3CA表达下调,细胞增殖和迁移能力显著下降[30]。在初步的机制探讨中,PPP3CA敲低显著增加p-ERK1/2磷酸化表达(图 6),且p-ERK1/2抑制剂可以部分回复PPP3CA沉默诱导的细胞凋亡和E-cadherin表达上调(图 7)。文献报道在幽门螺杆菌分泌蛋白HP1286诱导的细胞凋亡过程中,ERK1/2磷酸化水平显著上升,抑制ERK1/2磷酸化可明显减少凋亡细胞比例[31];在子宫内膜异位症研究中,ERK1/2激活也被发现可以促进颗粒细胞凋亡,抑制细胞增殖[32];同样地,在敲低IGFBP5的髓核细胞中,ERK1/2被激活,磷酸化增加,从而促进细胞凋亡,抑制细胞增殖和克隆形成[33]。因此,沉默钙调磷酸酶PPP3CA促进MM细胞凋亡、抑制增殖很可能是由于PPP3CA去磷酸化作用减弱,从而上调ERK1/2磷酸化水平。

综上,本研究结果显示,在mK4细胞中,CNA的亚型PPP3CA沉默后,上皮细胞标志物E-cadherin表达上调,促进细胞凋亡,抑制细胞增殖和迁移,初步证实PPP3CA在MET转化和MM细胞命运调节中发挥重要作用,但是PPP3CA如何通过负调节ERK磷酸化水平发挥功能,PPP3CA-ERK信号轴在mK4细胞及肾发育过程中的具体作用机制有待在进一步研究中深入挖掘和阐述。

参考文献
[1]
McCampbell KK, Springer KN, Wingert RA. Analysis of nephron composition and function in the adult zebrafish kidney. J Vis Exp, 2014(90): e51644.
[2]
Vainio S. How the developing mammalian kidney assembles its thousands of nephrons: Fgfs as stemness signals. Dev Cell, 2012, 22(6): 1125-1126. DOI:10.1016/j.devcel.2012.05.016
[3]
Saxén L, Sariola H. Early organogenesis of the kidney. Pediatr Nephrol, 1987, 1(3): 385-392. DOI:10.1007/BF00849241
[4]
Nishita M, Qiao S, Miyamoto M, et al. Role of Wnt5a-Ror2 signaling in morphogenesis of the metanephric mesenchyme during ureteric budding. Mol Cell Biol, 2014, 34(16): 3096-3105. DOI:10.1128/MCB.00491-14
[5]
Pope IV JC, Brock Ⅲ JW, Adams MC, et al. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J Am Soc Nephrol, 1999, 10(9): 2018-2028.
[6]
Tanigawa S, Sharma N, Hall MD, et al. Preferential propagation of competent SIX2+ nephronic progenitors by LIF/ROCKi treatment of the metanephric mesenchyme. Stem Cell Reports, 2015, 5(3): 435-447. DOI:10.1016/j.stemcr.2015.07.015
[7]
Kobayashi A, Valerius MT, Mugford JW, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell, 2008, 3(2): 169-181.
[8]
Lyu ZS, Mao ZM, Wang HL, et al. MiR-181b targets Six2 and inhibits the proliferation of metanephric mesenchymal cells in vitro. Biochem Biophys Res Commun, 2013, 440(4): 495-501. DOI:10.1016/j.bbrc.2013.09.059
[9]
Self M, Lagutin OV, Bowling B, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J, 2006, 25(21): 5214-5228. DOI:10.1038/sj.emboj.7601381
[10]
Klee CB, Crouch TH, Krinks MH. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc Natl Acad Sci USA, 1979, 76(12): 6270-6273. DOI:10.1073/pnas.76.12.6270
[11]
Hammond DR, Udvadia AJ. Cabin1 expression suggests roles in neuronal development. Dev Dynam, 2010, 239(9): 2443-2451. DOI:10.1002/dvdy.22367
[12]
Qian YY, Wu BB, Lu YL, et al. Early-onset infant epileptic encephalopathy associated with a de novo Ppp3ca gene mutation. Cold Spring Harb Mol Case Stud, 2018, 4(6): a002949. DOI:10.1101/mcs.a002949
[13]
Li X, Zhu LL, Yang AC, et al. Calcineurin-NFAT signaling critically regulates early lineage specification in mouse embryonic stem cells and embryos. Cell Stem Cell, 2011, 8(1): 46-58.
[14]
Zhang Y, Liu RB, Cao Q, et al. USP16-mediated deubiquitination of calcineurin A controls peripheral T cell maintenance. J Clin Invest, 2019, 129(7): 2856-2871. DOI:10.1172/JCI123801
[15]
Sun L, Zhu LL, Zaidi N, et al. Cellular and molecular consequences of calcineurin Aα gene deletion. Ann New York Acad Sci, 2007, 1116(1): 216-226. DOI:10.1196/annals.1402.050
[16]
Wu JN, Zheng CX, Wang X, et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J Clin Invest, 2015, 125(11): 4091-4106. DOI:10.1172/JCI81061
[17]
Zhao Y, Wu JN, Zhang MC, et al. Angiotensin Ⅱ induces calcium/calcineurin signaling and podocyte injury by downregulating microRNA-30 family members. J Mol Med, 2017, 95(8): 887-898. DOI:10.1007/s00109-017-1547-z
[18]
Valerius MT, Patterson LT, Witte DP, et al. Microarray analysis of novel cell lines representing two stages of metanephric mesenchyme differentiation. Mech Dev, 2002, 110(1/2): 151-164.
[19]
McLaughlin N, Yao X, Li YW, et al. Histone signature of metanephric mesenchyme cell lines. Epigenetics, 2013, 8(9): 970-978. DOI:10.4161/epi.25753
[20]
Luo L, Iqbal MZ, Liu C, et al. Engineered nano-immunopotentiators efficiently promote cancer immunotherapy for inhibiting and preventing lung metastasis of melanoma. Biomaterials, 2019, 223: 119464. DOI:10.1016/j.biomaterials.2019.119464
[21]
Ni DS, Yi QY, Liu JN, et al. A1CF-promoted colony formation and proliferation of RCC depends on DKK1-MEK/ERK signal axis. Gene, 2020, 730: 144299. DOI:10.1016/j.gene.2019.144299
[22]
He QL. Gulo regulates the proliferation, apoptosis and mesenchymal-to-epithelial transformation of metanephric mesenchyme cells via inhibiting six2[D]. Chongqing: Chongqing Medical University, 2019 (in Chinese).
何庆龄. Gulo通过抑制Six2调控后肾间充质细胞增殖、凋亡和MET[D].重庆: 重庆医科大学, 2019.
[23]
Ihermann-Hella A, Hirashima T, Kupari J, et al. Dynamic MAPK/ERK activity sustains nephron progenitors through niche regulation and primes precursors for differentiation. Stem Cell Rep, 2018, 11(4): 912-928. DOI:10.1016/j.stemcr.2018.08.012
[24]
Kurtzeborn K, Kwon HN, Kuure S. MAPK/ERK signaling in regulation of renal differentiation. Int J Mol Sci, 2019, 20(7): 1779. DOI:10.3390/ijms20071779
[25]
Ostenfeld MS, Bramsen JB, Lamy P, et al. miR-145 induces caspase-dependent and -independent cell death in urothelial cancer cell lines with targeting of an expression signature present in Ta bladder tumors. Oncogene, 2010, 29(7): 1073-1084. DOI:10.1038/onc.2009.395
[26]
Fong CC, Wei F, Chen Y, et al. Danshen-Gegen decoction exerts proliferative effect on rat cardiac myoblasts H9c2 via MAPK and insulin pathways. J Ethnopharmacol, 2011, 138(1): 60-66. DOI:10.1016/j.jep.2011.08.027
[27]
Imai Y, Hirano M, Kobayashi M, et al. HDAc inhibitors exert anti-myeloma effects through multiple modes of action. Cancers, 2019, 11(4): 475. DOI:10.3390/cancers11040475
[28]
Ding YX, Wu YY, Gao W, et al. Analysis of gene expression profiling variations induced by hsa-miR-145-5p-overexpression in laryngeal squamous cell carcinoma cell line Tu-177. Mol Med Rep, 2017, 16(5): 5863-5870. DOI:10.3892/mmr.2017.7360
[29]
He RL, Wu ZJ, Liu XR, et al. Calcineurin/NFAT signaling modulates pulmonary artery smooth muscle cell proliferation, migration and apoptosis in monocrotaline-induced pulmonary arterial hypertension rats. Cell Physiol Biochem, 2018, 49(1): 172-189. DOI:10.1159/000492852
[30]
Zeng J, Ma X, Wang JJ, et al. Down-regulated HSDL2 expression suppresses cell proliferation and promotes apoptosis in papillary thyroid carcinoma. Biosci Rep, 2019, 39(6): BSR20190425. DOI:10.1042/BSR20190425
[31]
Tavares R, Pathak S K. Helicobacter pylori Secreted protein HP1286 triggers apoptosis in macrophages via TNF-independent and ERK MAPK-dependent pathways. Front Cell Infect Microbiol, 2017, 7: 58.
[32]
Li Y, Liu YD, Chen SL, et al. Down-regulation of long non-coding RNA MALAT1 inhibits granulosa cell proliferation in endometriosis by up-regulating P21 via activation of the ERK/MAPK pathway. Mol Hum Reprod, 2019, 25(1): 17-29. DOI:10.1093/molehr/gay045
[33]
Wang T, Wang CJ, Tian S, et al. Overexpressed IGFBP5 promotes cell proliferation and inhibits apoptosis of nucleus pulposus derived from rats with disc degeneration through inactivating the ERK/MAPK axis. J Cell Biochem, 2019, 120(11): 18782-18792. DOI:10.1002/jcb.29191