生物工程学报  2020, Vol. 36 Issue (10): 2029-2039
http://dx.doi.org/10.13345/j.cjb.200107
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

许燕艳, 陈珊莉, 陈丹, 彭双周, 程媛, 李金宇, 李永坤, 江龙光, 袁彩, 黄明东
Xu Yanyan, Chen Shanli, Chen Dan, Peng Shuangzhou, Cheng Yuan, Li Jinyu, Li Yongkun, Jiang Longguang, Yuan Cai, Huang Mingdong
缺血性脑卒中溶栓药物研究进展
Recent progress in developing of thrombolytic agents for ischemic stroke
生物工程学报, 2020, 36(10): 2029-2039
Chinese Journal of Biotechnology, 2020, 36(10): 2029-2039
10.13345/j.cjb.200107

文章历史

Received: March 8, 2020
Accepted: June 1, 2020
Published: June 16, 2020
缺血性脑卒中溶栓药物研究进展
许燕艳1 , 陈珊莉2 , 陈丹2 , 彭双周3 , 程媛2 , 李金宇2 , 李永坤4 , 江龙光2 , 袁彩1 , 黄明东1     
1. 福州大学 生物科学与工程学院,福建 福州 350116;
2. 福州大学 化学学院,福建 福州 350116;
3. 厦门大学 药学院,福建 厦门 361102;
4. 福建医科大学省立临床学院 福建省立医院神经内科,福建 福州 350001
摘要:缺血性脑卒中是一种高发病率、高死亡率的重大健康危机。溶栓药物能快速溶解血栓、减少出血副作用、实现血管再通,对缺血性脑卒中治疗起到关键性的作用。重组组织纤溶酶原激活剂(rtPA)是FDA批准的唯一缺血性脑卒中药物,但在临床使用中有诸多限制。近年来,基于tPA的溶栓药物及治疗策略发展迅速,文中结合笔者课题组及目前国内外的相关研究成果,回顾了该领域的最新进展,为新型溶栓药物发展提供科学依据和思路。
关键词缺血性脑卒中    组织型纤溶酶原激活剂    溶栓    
Recent progress in developing of thrombolytic agents for ischemic stroke
Yanyan Xu1 , Shanli Chen2 , Dan Chen2 , Shuangzhou Peng3 , Yuan Cheng2 , Jinyu Li2 , Yongkun Li4 , Longguang Jiang2 , Cai Yuan1 , Mingdong Huang1     
1. College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, Fujian, China;
2. College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China;
3. College of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, Fujian, China;
4. Department of Neurology, Fujian Provincial Hospital, Provincial Clinical Department of Fujian Medical University, Fuzhou 350001, Fujian, China
Abstract: Ischemic stroke is a major health crisis causing high mortality and morbidity. The key treatment relies on the rapid intervention to dissolve thrombus, to reduce bleeding side effect and re-canalize clotted blood vessels using clot lysis drugs. Tissue plasminogen activator (tPA) is the only FDA-approved drug for ischemic stroke, but it has many limitations in clinical use. In recent years, the development of thrombolytic drugs and treatment strategies based on tPA has been progressed rapidly. Here we review the recent progress in this field, including the contributions from us and others, to promote the future development of novel thrombolytic drugs.
Keywords: ischemic stroke    tissue plasminogen activator    thrombolysis    

脑卒中是一类发病率、致残率、致死率、复发率都极高的心血管疾病,也是全世界致残、致死的主要疾病之一。在中国,脑卒中发病率持续上升,其中2017年我国约有196万人死于脑卒中,成为我国居民死亡和残疾的头号原因[1]。脑卒中分为缺血性和出血性两种,其中,缺血性脑卒中占80%[2]。《中国脑卒中防治报告2018》显示,从2016年到2018年,我国缺血性脑卒中的发病率同样呈现出持续上升的趋势[1]

近年来治疗缺血性脑卒中的主要手段有血管内机械取栓和静脉溶栓[3]。其中血管内机械性取栓具有血管再通速度快、保护神经功能等优点,是目前大血管栓塞的重要治疗方法[4]。由于只有不到20%的缺血性脑卒中属于大血管栓塞[5],且术后的诸多因素[6-7] (如血管近心端颈动脉和椎动脉开口狭窄、多次取栓后血管内膜损伤、血管本身缺血再灌注损伤等)会导致血管再闭塞,而且手术取栓对医院的资源和设备要求较高,这将导致高昂的治疗费用[1]。静脉溶栓是通过在一定时间窗内注射溶栓药物,清除堵塞于脑血管中的血栓,较机械取栓具有显著减少血管再闭塞、改善脑卒中预后、治疗费用相对较低等优点,具有很大的应用前景。由于静脉溶栓有增加颅内出血的风险,目前在临床上只有不到5%缺血性脑卒中患者接受溶栓治疗[8]。因此,对新型溶栓药物及疗法的研究有助于造福更多的缺血性脑卒中患者。本文将综述溶栓药物及治疗策略的研究进展。

1 血栓形成与纤维蛋白溶解

人体保持血液处于正常流动状态,主要依赖凝血系统和纤溶系统处于一个动态平衡。凝血系统包括多种凝血因子,它们协同工作以产生纤维蛋白,并与血小板凝块一起形成血栓。纤溶系统是一种蛋白水解过程,非活性纤溶酶原(Plasminogen)被纤溶酶原激活剂(Plasminogen activator,PA)转化为活性纤溶酶(Plasmin),将血栓上的纤维蛋白网切断,导致血栓崩解[9-10] (图 1)。随着人体的衰老,纤溶功能下降,人体血液凝固性增高进而形成血栓。血管内形成的血栓引起血管堵塞,导致颅内供血障碍,脑组织因缺血、缺氧坏死,在临床上表现为瘫痪、语言障碍等症状,严重的甚至会死亡。静脉注射溶栓药物因其具有操作方便、发挥作用迅速、可快速溶解血栓、使血管恢复血流、防止脑组织发生不可逆性损伤等优点,在临床治疗被优先选择。

图 1 血栓形成和降解 Fig. 1 Thrombus formation and degradation. During thrombus formation, fibrinogen was activated by thrombin to form fibrin, which is further crosslinked by factor ⅩⅢa to form stable fibrin. Fibrinogen contains a ligand site for the platelet glycoprotein Ⅱb/Ⅲa receptor, thus platelets are embedded in the fibrin mesh, forming a firm fibrin clot, or thrombus. In thrombus degradation: plasminogen activators convert plasminogen to plasmin, which further cuts the fibrin net, degrades the fibrin clot, and dissolves the thrombus. PAI-1 inhibits activities of plasminogen activators, including tPA and uPA.
2 临床上使用的溶栓药物类型

目前在临床上常用于溶栓的药物主要分为3代(表 1)。第一代是链激酶(Streptokinase,SK)和尿激酶(Urokinase,uPA)。SK是一类链球菌分泌的一种微生物纤溶酶原激活物,通过间接激活纤溶酶原激活剂产生活性纤溶酶发挥溶栓作用[11]。因其生产成本低,半衰期适中(约10 min),在1987年被批准用作溶栓剂,但其最大的缺点就是来源于细菌,有一定的免疫原性,且缺乏纤维蛋白特异性,在临床使用时易出现出血副作用[12]。uPA是体内天然的纤溶蛋白,最早从人的尿液中发现并分离出来[13],它是一种丝氨酸蛋白酶,可将纤溶酶原转化为纤溶酶[14-15],尿激酶同样无纤维蛋白特异性。第二代溶栓药物的主要代表是阿替普酶(Alteplase,rtPA),其最早被FDA批准用于脑梗塞治疗。与SK和uPA相比,rtPA具有纤维蛋白特异性,可以有效地减少出血风险,但其半衰期较短,在临床使用时需要较高的剂量,而过量的rtPA会激活基质金属蛋白酶(Matrix metalloproteinase,MMP),导致血脑屏障的破坏,增加脑出血和水肿的风险[16]。第三代临床上使用的溶栓药物主要是rtPA的突变体(瑞替普酶、替奈普酶),这些新的治疗药物比rtPA表现出更长的半衰期,增强纤维蛋白特异性,以及更高的抵抗PAI-1的能力[17]

表 1 临床使用溶栓药物 Table 1 Clinical use of thrombolytic drugs
Activating agent Fibrin specificity Immunogenicity Maximum half-life (min) Rate of
side effects
The year
of approval
Clinical
indications
First generation Streptokinase No Yes 18 High 1987 AMI, PE, DVT,
Artery thrombosis
Urokinase No No 18 High 1978 PE
Second generation Alteplase Yes No 6 Low 1987 AMI, PE, Stroke
Anisoylated plasminogen streptokinase activator complex No Yes 105 Medium 1989 AMI
Third generation Reteplase Yes No 15 Low 1996 AMI
Teneteplase Yes No 24 Low 2000 AMI
Note: AMI: acute myocardial infarction; PE: pulmonary embolism; DVT: deep vein thrombosis.
3 缺血性脑卒中溶栓药物存在的问题

rtPA是自1996年美国FDA批准用于治疗急性缺血性卒中的唯一药物,尽管已被批准用于脑梗塞治疗超过20年,并在全球范围内广泛使用,rtPA在临床使用时仍然存在一些问题:第一,时间窗口小。纤溶酶原激活剂需要在脑卒中发生的4.5 h以内给药[18]。如果超过4.5 h给药,血栓导致的炎症反应很强,血脑屏障通透性增加产生神经毒性、神经元损伤严重[19-20]。在临床应用中,会有诸多因素导致病人超出时间窗,造成救治延迟而影响治疗效果[21]。由于时间窗的限制,目前只有不到5%的中风患者接受rtPA治疗;第二,rtPA活性在体内会被其内源性抑制剂(PAI-1)快速抑制,形成的抑制复合物被肝脏清除的速度大大加快。由于其在体内的半衰期较短(5 min),在临床治疗中往往需要使用高剂量。以阿替普酶为例,一般50 kg体重需要使用高达90 mg的药物剂量[22-23],以人体血液量为4 L计算,其初始血液浓度可达3.2×10–7 mol/L,比体内天然tPA的浓度(7.5×10–11 mol/L)高了近10 000倍,高浓度纤溶酶原激活剂的使用易产生神经毒性和出血副作用。

考虑到治疗时间窗狭窄、颅内出血及神经毒性副作用,急需建立提高溶栓效率、降低溶栓药物剂量的新策略。

4 新型溶栓药物研究进展

tPA是一类单链丝氨酸类蛋白水解酶,分子量约为70 kD,它能够裂解纤溶酶原Arg561-Val562肽键,将其激活成有活性的纤溶酶,由纤溶酶进一步降解纤维蛋白网,最终使血栓溶解。活性tPA含有A链和B链,两条链由二硫键连接,A链含有:① F区(Finger domain) (第4–50位氨基酸);② E区(Epidermal growth factor domain) (第51–87位氨基酸);③ 2个K区(Kringle domain) (K1区,第88–176位氨基酸;K2区,第177–256位氨基酸);④ SPD区(Serine protease domain) (第276–527位氨基酸),含活性位点His322、Asp371和Ser478。其中F区和K2区负责tPA和纤维蛋白的结合;E区和K1区是肝脏受体LRP1 (Low-density lipoprotein receptor-related protein 1)的结合部位,决定了tPA整个分子在血液中的循环时间长短;SPD区是整个分子发挥酶活性的催化区,与纤溶酶原的激活能力息息相关。研究者在tPA分子结构修饰改造方面进行了大量工作,希望得到具有更强纤溶酶原激活能力、更高纤维蛋白特异性、对PAI-1具有更强耐受性和更低血浆清除率的突变体,以进一步提高tPA的溶栓性质。

4.1 延长体内半衰期

体内游离的tPA以及tPA抑制剂复合物会被甘露糖受体(Mannose receptor,MR)、LRP1内吞而被清除,导致体内tPA半衰期短(5 min)。tPA的K1结构域通过连接到Asn117的高甘露糖寡糖与肝内皮和库普弗细胞中表达的甘露糖受体结合[24],而LRP1的结合不仅与K1结构域有关,还与E结构域相关[25]。目前研究已发现缺乏K1结构域的突变体帕米普酶(Pamiteplase)其半衰期为30–47 min[26];缺乏大部分F结构域、E结构域和Asn117Gln取代的拉诺普酶(Lanoteplase),其半衰期延长至37–45 min[27];完全删除了E和F区、仅仅含有K2和SPD结构域的第三代商品化tPA突变体瑞替普酶(Reteplase),尽管分子量小,却有较长的半衰期,但因缺乏F结构域,使其对纤维蛋白的亲和力较低。虽然以上突变体对延长其半衰期效果明显,但是却无法有效地逃逸其内源性抑制剂PAI-1的抑制[28]

4.2 逃逸内源性抑制剂PAI-1的抑制

PAI-1是uPA和tPA两种纤溶酶原激活剂的主要生理抑制剂,可在体内不断产生,维持在0.1–0.4 nmol/L的浓度范围[29]。设计具有逃逸PAI-1抑制能力的重组tPA突变体有利于降低临床用药量,一直是一个重要研究方向。

尽管研究人员探索了许多tPA突变体[30-36],但目前只有替奈普酶(Teneteplase,TNKase)有逃逸PAI-1抑制能力。该突变体是tPA的4个残基片段(KHRR296–299)突变为丙氨酸,我们的晶体结构研究表明该片段和PAI-1确实有强相互作用,解释了该突变的有效性。然而我们的分子对接结果也显示该片段与纤溶酶原有较强的相互作用[37],其突变可能会影响tPA与纤溶酶原的作用,而减弱其纤溶酶原激活能力[37]。我们的数据也证明了该片段的突变(KHRR296–299AAAA)确实降低了tPA对纤溶酶原的激活能力(数据待发表)。

我们发现了一种新的tPA突变体,不仅能够逃逸PAI-1的抑制,同时还具有更强的激活纤溶酶的活性。这个突变体是基于我们的tPA:PAI-1复合物的晶体结构设计并通过筛选得到。我们构建了与tPA结合的纤溶酶原激活环(环状肽,KKCPGRVVGGC)的分子模型,基于这个模型和tPA:PAI-1结构,设计了一系列tPA水解酶结构域突变体(图 2A),旨在找出能够减少PAI-1结合但是不影响纤溶酶激环肽结合的tPA突变体,结果发现tPA中活性中心附近的Ala146被Tyr取代,能使tPA逃逸内源性抑制剂PAI-1抑制的能力提高30倍(图 2B),出乎意料的是该突变体对纤溶酶原的激活程度提高了5倍[38] (图 2C)。体外溶栓实验结果表明野生型tPA的溶栓活性受到PAI-1的抑制,而tPA(A146Y)突变体几乎不受影响(图 2D)。小鼠肺栓塞模型结果表明野生型tPA-SPD血块溶解率38%±4%,而tPA(A146Y)的溶解率高达52%±3%,体内纤溶活性提高了14% (图 2F)。这些结果充分证明tPA(A146Y)不仅具有逃逸PAI-1的抑制能力,同时提高其酶活性,这是自1996年FDA批准阿替普酶以来最突出的进展,但是还需要进一步开展动物和临床试验。

图 2 基于结构的高效溶栓剂发现(修改自文献[38]) Fig. 2 Discovery of high efficiency clot lysis agent-rtPA(A146Y) based on protein structures (All diagrams were modified from the literature [38]). (A) Structure-based mutant design: five target residues are selected shown on tPA structure (grey surface) overlaid with its inhibitor PAI-1 reactive-centre-loop (green) and physiological substrate plasminogen cleavage loop (red). (B) Measurement of PAI-1 resistance of tPA-SPDvariants: PAI-1 resistance of tPA variants was assessed by residual amidolytic activity of the variants in the presence of varying amounts of active PAI-1. (C) Plasminogen activation activity of tPA-SPD variants: rtPA(A146Y) mutant showed the strongest activity to cleave plasminogen (PLG). The amount of plasmin generated was measured by plasmin chromogenic substrate. (D) In vitro thrombolytic of tPA-SPD(A146Y): Clot lysis human platelet poor plasma in the presence of exogenous PAI-1 was monitored following the addition of different mutants of tPA-SPD. (E) Schematic diagram of mouse pulmonary embolism model. (F) In vivo thromboly of tPA-SPD(A146Y): fibrinolytic activity recovered in blood samples obtained after injection of saline, tPA-SPD or tPA-SPD(A146Y) into the mice.
4.3 提高纤维蛋白特异性

去氨普酶(Desmoteplase)是一种新型的纤溶酶原激活物,它是蝙蝠的4种纤溶酶原激活物之一。它包含一个F结构域、E结构域和K结构域[39]。在没有纤维蛋白的情况下,这个分子几乎没有纤溶酶原激活活性,而纤维蛋白和纤维蛋白原的存在会使其活性增加12 900倍,是tPA活性的约1 000倍。最近报道了一种替奈普酶突变体,不含K2结构域,而F结构域替换成去氨普酶的结构域,这种突变体的纤维蛋白特异性比tPA高8倍,但比单独的去氨普酶的纤维蛋白特异性降低了25倍[40]。去氨普酶具有纤维蛋白特异性,无神经毒性,半衰期超过2 h,是治疗心血管疾病的潜在治疗剂[41]。但在进一步的临床试验中发现,去氨普酶在治疗脑卒中的致死率、致残率与安慰剂结果并没有显著差异,三期临床试验并未达到预期的终点[42]

5 溶栓药物治疗新方案 5.1 多种药物联用

有报道提出[43],凝血酶激活型纤溶抑制剂(Thrombin activatable fibrinolysis inhibitor,TAFI)与rtPA联合使用可能有利于溶栓,而后在血栓栓塞的小鼠模型中证明了单独使用TAFI与rtPA联合使用TAFI在溶栓上的疗效具有显著差异[44]。单独使用TAFI进行溶栓,无溶栓效果,而TAFI联合标准剂量的rtPA疗效显著。有越来越多的研究相继发现,rtPA联合抗栓药物(如糖蛋白Ⅱb-Ⅲa抑制剂[45-46]、凝血酶直接抑制剂[47-48])以及神经保护剂[49]有望改善血管再通率,保护神经,并减少再堵塞风险,但需要更多的研究数据证明其安全性以及临床使用的可靠性。本课题组发现了一系列PAI-1拮抗剂[50-52],与tPA联用治疗可竞争性结合PAI-1,而减少tPA的用量,在动物模型中取得了良好的溶栓效果[53-54],为治疗脑卒中提供了新的思路和方向。

5.2 新型药物递送系统

缺血性中风主要由于血流堵塞而引起局部组织缺血和缺氧。与静脉注射单独的tPA相比,利用不同的药物递送策略可以实现更有效的溶栓作用和更快的血管再通(表 2)。

表 2 新型溶栓药物递送策略 Table 2 Novel thrombolytic drug delivery strategies
Strategies Advantages Disadvantages References
Shear-Activated Nanotherapeutics No external force Reduced side effects Improve bioavailability Extend half-life Uncontrolled drug release Affected by blood flow speed [55-56]
Magnetic-Microrods Controlled drug release High drug release efficiency Neurotoxicity Easy retention in the body Limited by size [57-58]
Ultrasound High thrombolytic efficiency Reduce drug dose Vascular mechanical injury Vascular reocclusion [59-60]
Microbubble Good stability Easy encapsulation and degradation Poor penetration effect Limited by microbubble size [61-62]
5.2.1 剪切力靶向

Science杂志报道了一种对血液流速敏感的溶栓药递送策略[55]。当血栓形成时,血管狭窄,流过该区域的血流速度会加快,产生较高的流体剪切应力。基于此,该作者设计一种纳米载药体系,流过血栓堵塞的狭窄区时,高流体剪切应力将其内容物(tPA)剪切释放出来,并在血栓部位富集,发挥溶栓作用。在动脉内皮损伤形成血栓的小鼠模型中推注溶栓剂复合物,发现溶栓剂会优先积累在血栓部位,并在注射时间5 min后,完全清除血栓,而在正常的动脉血管中,溶栓剂不会被释放,以复合物的形式在血液中循环。同样静脉推注溶栓剂复合物可以重新打开血管并显著延迟血管闭塞时间,而注射相同剂量的溶栓药物疗效不明显且在闭塞时间方面没有变化[56]。有研究发现,这种物理触发机制还可用于血管扩张[63]。如果进一步提高该载药体系对液体流速的敏感度,实现可控药物释放,将对溶栓治疗产生积极的影响。

5.2.2 磁靶向

早期有研究发现在小鼠股动脉栓塞模型中,动脉注射镍与tPA形成的磁性纳米棒进行给药时,相比较单独的tPA给药,镍磁性纳米棒有效提高了溶栓效率[64],但镍具有毒性,这使得其在临床上使用受到限制。研究者发现了一种新型的无毒生物医学材料——超顺磁氧化铁(Fe3O4),解决了镍毒性问题。在此项研究中,tPA被共价加载到Fe3O4纳米材料上,形成超顺磁氧化铁-tPA纳米棒(MR),用于靶向传递。在利用FeCl3诱导的小鼠大脑远动脉闭塞形成的脑卒中模型中,颈动脉注射MR后,将磁体置于小鼠大脑靠近血块部位处,磁铁会提供一个强大的磁力,将MR迅速地引到血栓部位。当显微镜观察到MR到达血栓部位时,撤掉磁铁,此时大量的MR聚集在血栓部位。为了进一步提高溶栓效果,当撤掉磁铁后,可将小鼠头部置于一个旋转磁场中,MR受到旋转磁场的作用力,一方面加大了对血块的渗透性,另一方面旋转产生的机械搅拌作用力破坏纤维蛋白网,促使血栓溶解。重要的是MR对正常机体器官没有影响[58]。不过尽管这种递送策略在小鼠脑卒中模型中可行,由于目前尚无可用于临床环境、经过批准的磁性靶向设备,且磁力大小的确定还没有一个安全可行的方法,此策略的应用还有待完善。

5.2.3 多种策略联合运用

除上所述的策略之外,还有多种策略可以被联合运用于溶栓。超声对血块有机械破碎作用,常被单独使用或者作为辅助治疗血栓的一种手段。由于单独使用会造成血管机械损伤以及由血小板激活引起的再闭塞[60]。目前超声波在溶栓治疗中主要作为辅助手段,即超声溶栓。与微泡联合使用是改善超声溶栓的有效手段。微泡是一种微小的充满气体或空气的微球,在声学场的作用下,微泡会发生体积振荡,即声空化。稳定的声空化会导致血块表面腐蚀,从而增强溶栓剂向血块的渗透作用[65]。先前有多项研究表明,超声联合包封溶栓药物的微泡可改善动物阻塞血管的再通。在大鼠脑卒中模型中进一步证明包封tPA的微泡联合超声在治疗大鼠脑部闭塞血管的再通率与单独静脉注射tPA相似[66]。在临床试验中发现,采用以半乳糖为基础的微泡、rtPA和超声联合治疗策略的脑卒中患者比单独使用微泡包封rtPA的脑卒中患者获得更好的再通效果[62]。随着新的药物递送策略的不断发现与完善,多种策略联用将成为解决溶栓药物安全性问题的新选择。

6 总结与展望

溶栓是脑卒中治疗唯一的药理学补救措施。tPA作为缺血性脑卒中的唯一指定溶栓药物,由于治疗时间窗口狭窄的限制,患者经常无法得到及时救治。基于此,在2015年,中国国家卫生和计划生育委员会发布的189号文件中,明确开通心脑血管疾病的绿色通道[67],这不仅缩短了脑卒中患者的救治时间,也将使溶栓药物tPA的需求大幅度提高。尽管开发了多种重组tPA突变体,但是高剂量药物导致的出血事件、神经毒性等副作用问题仍然是一大短板。结合现有溶栓药物的优点,设计出半衰期长、血栓靶向性强、逃逸PAI-1抑制能力强、溶栓效率高的理想型溶栓药物是未来研究的重点;同时避免tPA修饰产生的免疫原性、增加递药系统高分子材料的降解安全性和递药系统的可控性,也都将是溶栓药物研究和开发的难点和热点。

参考文献
[1]
Compilation Team of China Stroke Prevention and Control Report 2018. The prevention and treatment of stroke still face huge challenges-brief report on stroke prevention and treatment in China. Chin Circ J, 2019, 34(2): 105-119 (in Chinese).
《中国脑卒中防治报告2018》编写组. 我国脑卒中防治仍面临巨大挑战——《中国脑卒中防治报告2018》概要. 中国循环杂志, 2019, 34(2): 105-119.
[2]
Moretti A, Ferrari F, Villa R. Pharmacological therapy of acute ischaemic stroke: achievements and problems. Pharmacol Ther, 2015, 153: 79-89. DOI:10.1016/j.pharmthera.2015.06.004
[3]
Moussaddy A, Demchuk AM, Hill MD. Thrombolytic therapies for ischemic stroke: Triumphs and future challenges. Neuropharmacology, 2018, 134: 272-279. DOI:10.1016/j.neuropharm.2017.11.010
[4]
Smith WS, Sung G, Starkman S, et al. Safety and efficacy of mechanical embolectomy in acute ischemic stroke: results of the MERCI trial. Stroke, 2005, 36(7): 1432-1438. DOI:10.1161/01.STR.0000171066.25248.1d
[5]
Campbell BCV. Advances in stroke medicine. Med J Australia, 2019, 210(8): 367-374.
[6]
Leung V, Sastry A, Srivastava S, et al. Mechanical thrombectomy in acute ischaemic stroke: a review of the different techniques. Clin Radiol, 2018, 73(5): 428-438. DOI:10.1016/j.crad.2017.10.022
[7]
Zhou ZG, Chen J, Zhu QF. Analysis of the cause of reocclusion of blood vessels after solitaire stent mechanical thrombectomy and iits pvention and treatment strategy. Med Innov China, 2018, 15(16): 5-9 (in Chinese).
周志国, 陈静, 朱青峰. Solitaire支架机械取栓术后血管再闭塞病因分析及防治策略. 中国医学创新, 2018, 15(16): 5-9.
[8]
Fonarow GC, Smith EE, Saver JL, et al. Improving door-to-needle times in acute ischemic stroke: the design and rationale for the American Heart Association/American Stroke Association's Target: Stroke initiative. Stroke, 2011, 42(10): 2983-1989. DOI:10.1161/STROKEAHA.111.621342
[9]
Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev, 2009, 23(5): 225-229.
[10]
Aisina RB, Mukhametova LI. Structure and function of plasminogen/plasmin system. Russ J Bioorg Chem, 2014, 40(6): 590-605. DOI:10.1134/S1068162014060028
[11]
Kunamneni A, Abdelghani TTA, Ellaiah P. Streptokinase-the drug of choice for thrombolytic therapy. J Thrombo Thrombol, 2007, 23(1): 9-23.
[12]
Banerjee A, Chisti Y, Banerjee UC. Streptokinase-a clinically useful thrombolytic agent. Biotechnol Adv, 2004, 22(4): 287-307. DOI:10.1016/j.biotechadv.2003.09.004
[13]
Bansal V, Roychoudhury PK. Production and purification of urokinase: a comprehensive review. Prot Express Purific, 2006, 45(1): 1-14. DOI:10.1016/j.pep.2005.06.009
[14]
Schwab JM, Meyermann R, Schluesener HJ. Serine proteases and brain damage-contribution of the urokinase-plasminogen activator system. Trends Neurosci, 2001, 24(1): 8-9.
[15]
Flemmig M, Melzig MF. Serine-proteases as plasminogen activators in terms of fibrinolysis. J Pharm Pharmacol, 2012, 64(8): 1025-1039. DOI:10.1111/j.2042-7158.2012.01457.x
[16]
Kaur J, Zhao ZH, Klein GM, et al. The neurotoxicity of tissue plasminogen activator?. J Cerebral Blood Flow Metabol, 2004, 24(9): 945-963. DOI:10.1097/01.WCB.0000137868.50767.E8
[17]
Moran JF. New therapeutic agents in thrombosis and thrombolysis, 2nd edition. Shock, 2003, 107(13): 195-196.
[18]
Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4. 5 hours after acute ischemic stroke. N Engl J Med, 2008, 359(13): 1317-1329. DOI:10.1056/NEJMoa0804656
[19]
Tsygan NV, Trashkov AP, Litvinenko IV, et al. Autoimmunity in acute ischemic stroke and the role of blood-brain barrier: the dark side or the light one?. Front Med, 2019, 13(4): 420-426. DOI:10.1007/s11684-019-0688-6
[20]
Naqvi I, Hitomi E, Leigh R. Sustained opening of the blood-brain barrier with progressive accumulation of white matter hyperintensities following ischemic stroke. Brain Sci, 2019, 9(1): 16. DOI:10.3390/brainsci9010016
[21]
Zhao YH, Ji XM, Yang X. The research progress of the current status and influencing factors of in-hospital delay in thrombolysis process among ischemic stroke patients. Chin Nurs Manag, 2016, 16(1): 103-107 (in Chinese).
赵艺皓, 吉训明, 杨莘. 缺血性脑卒中患者溶栓院内延迟现状及其影响因素研究进展. 中国护理管理, 2016, 16(1): 103-107.
[22]
Diedler J, Ahmed N, Glahn J, et al. Is the maximum dose of 90 mg alteplase sufficient for patients with ischemic stroke weighing > 100 kg?. Stroke, 2011, 42(6): 1615-1620.
[23]
Micieli G, Marcheselli S, Tosi PA. Safety and efficacy of alteplase in the treatment of acute ischemic stroke. Vas Health Risk Manag, 2009, 5: 397-409.
[24]
Narita M, Bu GJ, Olins GM, et al. Two receptor systems are involved in the plasma clearance of tissue factor pathway inhibitor in vivo. J Biol Chem, 1995, 270(42): 24800-24804.
[25]
Camani C, Kruithof EKO. The role of the finger and growth factor domains in the clearance of tissue-type plasminogen activator by hepatocytes. J Biol Chem, 1995, 270(44): 26053-26056. DOI:10.1074/jbc.270.44.26053
[26]
Sumii T, Singhal AB, Asahi M, et al. Protective effects of pamiteplase, a modified t-PA, in a rat model of embolic stroke. Neuroreport, 2001, 12(3): 615-618. DOI:10.1097/00001756-200103050-00037
[27]
InTIME-Ⅱ Investigators. Intravenous NPA for the treatment of infarcting myocardium early. InTIME-Ⅱ, a double-blind comparison of single-bolus lanoteplase vs accelerated alteplase for the treatment of patients with acute myocardial infarction. Eur Heart J, 2000, 21(24): 2005-2013. DOI:10.1053/euhj.2000.2498
[28]
Simpson D, Siddiqui MAA, Scott LJ, et al. Spotlight on reteplase in thrombotic occlusive disorders. BioDrugs, 2007, 21(1): 65-68. DOI:10.2165/00063030-200721010-00008
[29]
Iqbal Z, Jiang LG, Chen Z, et al. Tumor-specific imaging and photodynamic therapy targeting the urokinase receptor//Hamblin MR, Huang YY, Eds. Imaging in Photodynamic Therapy. New York: CRC Press, 2017: 281-296.
[30]
Ross AM. New plasminogen activators: a clinical review. Clin Cardiol, 1999, 22(3): 165-171. DOI:10.1002/clc.4960220303
[31]
Ouriel K. Safety and efficacy of the various thrombolytic agents. Rev Cardiovasc Med, 2019, 3 Suppl2: 17-24.
[32]
Stringer KA. Biochemical and pharmacologic comparison of thrombolytic agents. pharmacotherapy, 2012, 16(5P2): 119S-126S.
[33]
Deitcher SR, Jaff MR. Pharmacologic and clinical characteristics of thrombolytic agents. Rev Cardiovasc Med, 2019, 3 S2: S25-S33.
[34]
Iqbal O, Tobu M, Demir M, et al. The role of thrombolytic drugs in the management of acute myocardial infarction and stroke. Turk J Haematol, 2002, 19(2): 151-177.
[35]
Collen D, Lijnen HR. Thrombolytic agents. Thromb Haemost, 2005, 93(4): 627-630. DOI:10.1160/TH04-11-0724
[36]
Llevadot J, Giugliano RP. New thrombolytic agents: does direct angioplasty still have a role?. Curr Interv Cardiol Rep, 2000, 2(3): 250-257.
[37]
Gong LH, Liu M, Zeng T, et al. Crystal structure of the michaelis complex between tissue-type plasminogen activator and plasminogen activators inhibitor-1. J Biol Chem, 2015, 290(43): 25795-25804. DOI:10.1074/jbc.M115.677567
[38]
Peng SZ, Xue GP, Chen SL, et al. tPA point mutation at autolysis loop enhances resistance to PAI-1 inhibition and catalytic activity. Thromb Haemost, 2019, 119(1): 77-86. DOI:10.1055/s-0038-1676518
[39]
Li XQ, Ling L, Li CQ, et al. Efficacy and safety of desmoteplase in acute ischemic stroke patients: a systematic review and meta-analysis. Medicine (Baltimore), 2017, 96(18): e6667. DOI:10.1097/MD.0000000000006667
[40]
Kazemali M, Majidzadeh-AK, Sardari S, et al. Design of a novel chimeric tissue plasminogen activator with favorable Vampire bat plasminogen activator properties. Enzyme Microb Technol, 2014, 67: 82-86. DOI:10.1016/j.enzmictec.2014.09.005
[41]
López-Atalaya JP, Roussel BD, Ali C, et al. Recombinant Desmodus rotundus salivary plasminogen activator crosses the blood-brain barrier through a low-density lipoprotein receptor-related protein-dependent mechanism without exerting neurotoxic effects. Stroke, 2007, 38(3): 1036-1043.
[42]
Albers GW, Von Kummer R, Truelsen T, et al. Safety and efficacy of desmoteplase given 3-9 h after ischaemic stroke in patients with occlusion or high-grade stenosis in major cerebral arteries (DIAS-3): a double-blind, randomised, placebo-controlled phase 3 trial. Lancet Neurol, 2015, 14(6): 575-584. DOI:10.1016/S1474-4422(15)00047-2
[43]
Guimarães AHC, Rijken DC. Thrombin activatable fibrinolysis inhibitor (TAFI) affects fibrinolysis in a plasminogen activator concentration-dependent manner. Thromb Haemost, 2004, 91(3): 473-479.
[44]
Durand A, Chauveau F, Cho TH, et al. Effects of a TAFI-inhibitor combined with a suboptimal dose of rtPA in a murine thromboembolic model of stroke. Cerebrovasc Dis, 2014, 38(4): 268-275. DOI:10.1159/000366266
[45]
Stone GW, Mehran R, Goldstein P, et al. Bivalirudin versus heparin with or without glycoprotein Ⅱb/Ⅲa inhibitors in patients with STEMI undergoing primary percutaneous coronary intervention: pooled patient-level analysis from the HORIZONS-AMI and EUROMAX trials. J Am College of Cardiol, 2015, 65(1): 27-38. DOI:10.1016/j.jacc.2014.10.029
[46]
Luo MY, Chen MZ, Li RZ. αⅡbβ3 modeling simulation and design of the cyclic RGD. Chin J Biotech, 2008, 24(2): 297-301 (in Chinese).
罗明艳, 陈梅宗, 李任植. αⅡbβ3同源模拟和环形RGD药物小分子设计. 生物工程学报, 2008, 24(2): 297-301.
[47]
Badreldin HA, Albassam G, Aldoughaim M, et al. Direct-thrombin inhibitor utilization in patients with heparin-induced thrombocytopenia and undergoing catheter-directed thrombolysis: a summary of published case reports. J Cardiovascul Nurs, 2019, 34(3): 244-249. DOI:10.1097/JCN.0000000000000555
[48]
Chao YT, Hu CJ, Chan L. Thrombolysis in an acute ischemic stroke patient with rivaroxaban anticoagulation: A case report. Medicine (Baltimore), 2019, 98(8): e14560. DOI:10.1097/MD.0000000000014560
[49]
Wang Y, Li Q, Wang J, et al. Combination of thrombolytic therapy and neuroprotective therapy in acute ischemic stroke: is it important. Eur Rev Med Pharmacol Sci, 2015, 19(3): 416-422.
[50]
Chen FL, Zhang GP, Hong ZB, et al. Design, synthesis, and SAR of embelin analogues as the inhibitors of PAI-1 (plasminogen activator inhibitor-1). Bioorgan Med Chem Lett, 2014, 24(10): 2379-2382. DOI:10.1016/j.bmcl.2014.03.045
[51]
Lin ZH, Jensen JK, Hong ZB, et al. Structural insight into inactivation of plasminogen activator inhibitor-1 by a small-molecule antagonist. Chem Biol, 2013, 20(2): 253-261. DOI:10.1016/j.chembiol.2013.01.002
[52]
Ngo JCK, Jiang LG, Lin ZH, et al. Structural basis for therapeutic intervention of uPA/uPAR system. Curr Drug Targets, 2011, 12(12): 1729-1743.
[53]
Gong LH, Proulle V, Fang C, et al. A specific plasminogen activator inhibitor-1 antagonist derived from inactivated urokinase. J Cell Mol Med, 2016, 20(10): 1851-1860.
[54]
Peng SZ, Xue GP, Gong LH, et al. A long-acting PAI-1 inhibitor reduces thrombus formation. Thromb Haemost, 2017, 117(7): 1338-1347. DOI:10.1160/TH16-11-0891
[55]
Korin N, Kanapathipillai M, Matthews BD, et al. Shear-activated nanotherapeutics for drug targeting to obstructed blood vessels. Science, 2012, 337(6095): 738-742.
[56]
Korin N, Gounis MJ, Wakhloo AK, et al. Targeted drug delivery to flow-obstructed blood vessels using mechanically activated nanotherapeutics. JAMA Neurol, 2015, 72(1): 119-122.
[57]
Zhou J, Guo DJ, Zhang Y, et al. Construction and evaluation of Fe3O4-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis. ACS Appl Mater Interfaces, 2014, 6(8): 5566-5576. DOI:10.1021/am406008k
[58]
Hu JN, Huang SW, Zhu L, et al. Tissue plasminogen activator-porous magnetic microrods for targeted thrombolytic therapy after ischemic stroke. ACS Appl Mater Interfaces, 2018, 10(39): 32988-32997.
[59]
Meairs S, Kern R. Intracranial perfusion imaging with ultrasound. Front Neurol Neurosci, 2015, 36: 57-70.
[60]
Francis CW. Ultrasound-enhanced thrombolysis. Echocardiography, 2001, 18(3): 239-246. DOI:10.1046/j.1540-8175.2001.00239.x
[61]
Nedelmann M, Ritschel N, Doenges S, et al. Combined contrast-enhanced ultrasound and rt-PA treatment is safe and improves impaired microcirculation after reperfusion of middle cerebral artery occlusion. J Cerebral Blood Flow Metabol, 2010, 30(10): 1712-1720.
[62]
Molina CA, Ribo M, Rubiera M, et al. Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke, 2006, 37(2): 425-429. DOI:10.1161/01.STR.0000199064.94588.39
[63]
Saxer T, Zumbuehl A, Müller B. The use of shear stress for targeted drug delivery. Cardiovascul Res, 2013, 99(2): 328-333. DOI:10.1093/cvr/cvt102
[64]
Cheng R, Huang WJ, Huang LJ, et al. Acceleration of tissue plasminogen activator-mediated thrombolysis by magnetically powered nanomotors. ACS Nano, 2014, 8(8): 7746-7754.
[65]
Everbach EC, Francis CW. Cavitational mechanisms in ultrasound-accelerated thrombolysis at 1 MHz. Ultrasound Med Biol, 2000, 26(7): 1153-1160.
[66]
Moumouh A, Barentin L, Tranquart F, et al. Fibrinolytic effects of transparietal ultrasound associated with intravenous infusion of an ultrasound contrast agent: study of a rat model of acute cerebral stroke. Ultrasound Med Biol, 2010, 36(1): 51-57.
[67]
中华人民共和国国家卫生和计划生育委员会.国卫办医函[2015]189号: 关于提升急性心脑血管疾病医疗救治能力的通知[EB/OL].[2020-5-26]. http://www.nhc.gov.cn/yzygj/s3594q/201503/d79fcefbeacd4933a9fd073f25123ca3.shtml.