生物工程学报  2019, Vol. 35 Issue (5): 766-774
http://dx.doi.org/10.13345/j.cjb.180407
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

杜家欢, 翟丽红, 郭东林
Du Jiahuan, Zhai Lihong, Guo Donglin
植物缺铁应答bHLH转录因子研究进展
Progress in bHLH transcription factors regulating the response to iron deficiency in plants
生物工程学报, 2019, 35(5): 766-774
Chinese Journal of Biotechnology, 2019, 35(5): 766-774
10.13345/j.cjb.180407

文章历史

Received: October 5, 2018
Accepted: February 9, 2019
Published: March 13, 2019
植物缺铁应答bHLH转录因子研究进展
杜家欢 , 翟丽红 , 郭东林     
哈尔滨师范大学 生命科学与技术学院 黑龙江省分子细胞遗传与遗传育种重点实验室,黑龙江 哈尔滨 150025
摘要:铁是植物生命活动必需的微量元素之一,土壤中有效铁含量较低,易导致植物缺铁。bHLH转录因子家族多个成员参与植物缺铁响应,发挥重要的调控作用。为深入了解植物对缺铁的反应机制,文中对植物缺铁胁迫应答的bHLH转录因子的结构、分类和功能及其调控机制、介导的缺铁胁迫信号通路进行综述,为应用bHLH转录因子培育缺铁耐受作物或富铁作物提供理论依据和设计策略。
关键词植物    缺铁应答    bHLH转录因子    调控    
Progress in bHLH transcription factors regulating the response to iron deficiency in plants
Jiahuan Du , Lihong Zhai , Donglin Guo     
Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
Abstract: Iron is one of the essential mineral micronutrients for plants. Low concentrations of effective iron in soil can easily increase risk of plant iron deficiency. Several members of bHLH transcription factors family participate in the response to iron deficiency and play an important role in iron regulation of plants. In order to better understand the mechanism of iron deficiency response, an overview of the structure, classification, function and regulatory mechanism of bHLH transcription factors was given in this review as well as signaling pathway triggered by iron deficiency. It will provide theoretical basis and design strategies for cultivating iron deficiency tolerant or iron-rich crops using bHLH transcription factors.
Keywords: plant    iron deficiency response    bHLH transcription factor    regulation    

铁(Fe)是植物生长发育的重要微量元素。铁作为许多细胞酶反应如光合作用、线粒体呼吸、激素合成和固氮作用的必要辅助因子[1],在植物光合作用和呼吸作用中不可缺少[2]。虽然铁是地球上最丰富的元素之一,但在中性和碱性土壤中,通常以不溶性的氢氧化铁形式存在,导致其生物可利用度低[3]。缺铁限制植物生长,进而降低作物的产量和品质[4-5],研究植物体的铁吸收和转运机制对提高作物的铁生物利用度至关重要[6]。植物通过调动还原酶、转运蛋白或铁载体的高效表达来提高铁吸收效率,这些蛋白的表达需要被严格调控[7]。植物利用一系列复杂的调控系统在转录和转录后水平维持铁稳态。目前已证实很多转录因子,如拟南芥Arabidopsis thalianaFITPYE、水稻Oryza sativaOsIROIDEF参与铁胁迫应答,并构成调控网络[8]FITPYEIRO都是碱性螺旋-环-螺旋(Basic helix-loop-helix,bHLH)转录因子家族的成员,提示bHLH蛋白在铁稳态调控中非常重要。文中对植物缺铁胁迫应答的bHLH转录因子的结构、分类和功能及其调控机制、介导的缺铁胁迫信号通路进行综述。旨在加深对缺铁胁迫应答中bHLH转录因子作用的了解,为提高植物缺铁胁迫耐受的实践工作提供理论依据。

1 植物应对缺铁的高效吸收策略

植物为了克服缺铁,采取两种机制从土壤中高效摄取铁,双子叶和非禾本科单子叶植物采取还原策略(策略Ⅰ),而禾本科单子叶植物采用螯合策略(策略Ⅱ)[9-11]。策略Ⅰ包括3个过程:根际酸化、还原和吸收。铁缺乏时,H+-ATP酶挤压质子将质子泵出细胞,降低根际的pH值,从而提高铁的溶解度[12]。酸化后,质膜结合的铁还原氧化酶2 (Ferric reduction oxidase 2,FRO2)将根表面的Fe3+还原为可溶性的Fe2+,然后通过高亲和的铁调转运蛋白1 (Iron-regulated transporter1,IRT1)导入根表皮细胞膜[13-16],随后与柠檬酸盐或烟酰胺螯合转移至其他组织和器官[17-18]。而策略Ⅱ植物通过释放铁载体从低铁含量的土壤中螯合吸收铁[19]。目前已经发现多个转运蛋白家族参与植物应对缺铁,但植物应对缺铁的调控机制仍有待研究。

2 植物缺铁胁迫应答bHLH转录因子 2.1 bHLH转录因子的结构和分类 2.1.1 bHLH转录因子的结构

bHLH转录因子因含有保守性较高的碱性螺旋-环-螺旋结构域而得名[20]。bHLH蛋白结构域约有60个氨基酸,有2个保守区域,N-末端的10–15个氨基酸组成碱性氨基酸区,C-末端的40个氨基酸组成螺旋-环-螺旋区[21-22]。HLH区调控bHLH蛋白互作形成同源或异源二聚体,通过碱性氨基酸区与DNA结合[23]。bHLH蛋白识别DNA的六核苷酸序列E-box (5′-CANNTG-3′)而与之结合,从而调控靶基因的表达。E-box中间2个核苷酸可变,因而有多种形式,最常见的一种形式是回文G-box (5′-CACGTG-3′)[24]。了解bHLH转录因子的结构特点有助于理解bHLH转录因子的调控作用。

2.1.2 bHLH转录因子的分类

bHLH转录因子最初在动物中被发现,随后在大多数真核生物被发现。bHLH家族是植物最大的转录因子家族之一,亚族非常丰富[25]。Toledo等曾将拟南芥中的147个bHLH转录因子基因划分为21个亚族[26],随着分子生物学的发展,拟南芥bHLH成员增加到162个,这些bHLH调节大量的发育和生理反应,其中之一就是缺铁反应。Li等将水稻中的167个bHLH转录因子分为22个亚族,将水稻和拟南芥中所有的bHLH转录因子划分为25个亚族[24]。Hudson等[27]报道,大豆bHLH除一个亚族外,其余亚族与拟南芥具有高度的一致性。拟南芥、水稻、番茄Solanum lycopersicum、玉米Zea mays和大豆Glycine max中bHLH转录因子的基因结构和系统发育关系比较复杂,表明不同植物物种之间存在进化差异。随着研究的深入,bHLH转录因子将会在更多植物中被发现并得到更为详尽的分析。

2.2 植物应答缺铁胁迫bHLH转录因子功能和表达模式

bHLH转录因子广泛存在于高等植物各组织中,参与各种信号转导、合成代谢以及逆境胁迫的响应[28]。作为很多调控网络的关键节点,bHLH转录因子结合特定的顺式作用元件,与传导信号及激素等互作[29],在衰老拮抗[30]、花青素合成[31]、开花促进[32]、细胞生长[33]、干旱[34]和盐[35]胁迫耐受等复杂调控网络中发挥重要作用。

植物调节铁离子平衡的机制较为复杂,bHLH转录因子家族的部分成员涉及其中。目前已经从拟南芥[36-37]、番茄[38-39]、大豆[40]、水稻[41-42]、小金海棠Malus xiaojinensis[43]、菊花Chrysan themum[44]、苹果Malus domestica[45]、杨树Populus[46]中克隆获得十余个受缺铁胁迫诱导的bHLH转录因子。其中拟南芥的AtbHLH29,也称为FIT1 (FER-like iron deficiency-induced transcription factor 1)、AtbHLH38AtbHLH39AtbHLH34,水稻IRO2 (Iron-related transcription factor2)和番茄FER基因的功能研究较为深入。番茄FER最早被克隆鉴定应答缺铁胁迫,主要在根表皮细胞中表达,定位于细胞核[47]。拟南芥的FIT1/FRU/AtbHLH29是番茄FER的同源基因[48],后期统一命名为FIT1AtFIT1在根表皮受缺铁诱导表达。fit突变体表型黄化,缺铁时fit突变体幼苗无法存活,约一半的缺铁诱导基因在其根中表达下调[49]bHLH38/39/100/101FIT同属于bHLH Ib亚族,bHLH38bHLH39在叶和根中都表达,且都受缺铁强烈诱导[36]bHLH18/19/20/25属于bHLH IVa亚族,主要在根中表达,可通过茉莉酸(Jasmonic acid,JA)处理诱导,是FIT的新型互作物,促进JA诱导的FIT蛋白降解,抑制拟南芥的铁吸收[50]

番茄、水稻、大豆和玉米的基因组中都有AtbHLH38/39/100/101的同源物。bHLH104、bHLH IVc亚族成员bHLH105bHLH115在缺铁调控中发挥各自不同的作用。尽管表达水平不同,bHLH38bHLH100的表达模式与bHLH39bHLH101相似。在不同解剖部位,bHLH39bHLH101表现出更为复杂的表达谱。bHLH39在根、茎中段细胞以及胚根、下胚轴等部位高表达,在种子和老叶中发挥重要作用[51]。对缺铁诱导敏感的POPEYE (PYE)蛋白通过负调控烟酰胺合酶NAS4 (Nicotianamine synthase 4)、铁氧还原酶FRO3 (Ferric reductase defective3)和锌诱导的促进因子ZIF1 (Zinc-induced facilitator1)的表达参与Fe稳态[52]。水稻中一组bHLH转录因子调节铁稳态也被证实。在缺铁条件下,水稻IRO2正调控麦角酸生物合成相关基因,IRO2的过表达促进铁的吸收和转移[42]。水稻IRO3蛋白被缺铁诱导表达高达20–70倍。IRO3过表达系对低铁高度敏感,缺铁诱导基因的表达受抑制,提示IRO3是水稻缺铁反应的负调控因子[53]

缺铁条件下小金海棠根中MxbHLH1表达上调,其表达模式类似AtFIT [43]。Zhao等[44]发现在缺铁和外源施加脱落酸(Abscisic acid,ABA)条件下菊花CmbHLH1在根中表达上调。杨树PtFIT只在缺铁的根中上调表达[46]。Li等[40]分离和表征了大豆FITAtbHLH38/39/100/101的同源基因GmbHLH57GmbHLH300,缺铁条件下两个基因均上调表达,并仅在根和根瘤中表达。Zhao等[47]发现在缺铁条件下MdbHLH104增加了苹果H+- ATPase的活性,增强了转基因苹果愈伤组织对缺铁的耐受性。水稻bHLH133在铁离子从根到嫩叶的转运过程中具有重要的调节作用[41]。Du等[39]鉴定出与拟南芥bHLH Ib亚族同源的番茄转录因子SlbHLH068SlbHLH068在缺铁的根、茎和叶片中表达显著上调。研究结果表明,上述bHLH转录因子在植物铁离子平衡中发挥重要作用,不同的bHLH在表达部位、诱导条件、调控模式等方面具有较大的差异,可能在植物铁平衡不同环节中发挥调控作用。

3 bHLH转录因子在植物铁胁迫中的调控机制 3.1 bHLH转录因子间的相互作用

bHLH家族的一个典型特点是bHLH蛋白通常以同源或异源二聚体的形式发挥作用。bHLH蛋白二聚体特异性地与靶基因启动子的不同部位结合,对基因的转录发挥调控作用。bHLH蛋白的C-末端HLH区域负责形成同源或异源二聚体[24-25]。在fit突变体中,IRT1FRO2的表达显著降低[49]。尽管FIT可以形成同源二聚体,但单独过表达FIT不增加FRO2IRT1的表达,检测不到嫩枝中有明显的表型或铁含量变化,除非FITbHLH38/39/100/101之一共表达才能驱动FRO2IRT1的表达[51]FITbHLH38/39的双高表达植株叶片的铁含量和对缺铁的耐受性显著提高[54],说明FIT需要与其他蛋白形成异源二聚体才能发挥其功能。与之类似,番茄FER和SlbHLH068的互作对于LeFRO1LeIRT1的激活是必不可少的[39]。酵母双杂交实验和荧光互补实验证实FIT可以与bHLH100/101中的任何一个形成异源二聚体[55]bHLH38/39/100/101独立于FIT诱导,其作用于FIT和bHLH Ib亚族基因的调控机制尚不清楚。bHLH104可以与ILR3形成异源二聚体,也可以与bHLH115互作,或与bHLH34轻微互作[37],意味着bHLH104可能与多个互作者发生二聚反应以专性调控靶基因。大豆GmbHLH57GmbHLH300单独过表达导致对缺铁响应的改变,共过表达上调下游铁摄取基因并增加了植物的铁含量[40]。MxbHLH1蛋白不能在酵母中完成激活转录,推断MxbHLH1可能需要与其他蛋白形成异二聚体才能调节缺铁响应基因的表达[43]。以上研究均表明bHLH蛋白以同源或异源二聚体的形式发挥缺铁响应的调控作用,通过实验获取bHLH蛋白形成二聚体的成分、结构等具体信息,对于加深对bHLH的认知、进一步研究bHLH的功能具有重要意义。

3.2 植物bHLH转录因子介导的缺铁胁迫信号通路 3.2.1 FIT调控网络

拟南芥AtFIT主要在根中受缺铁诱导表达。缺铁条件下,功能缺失突变体fit植株萎黄且长势严重迟缓。缺铁条件下超表达不能诱导IRT1FRO2FRO2IRT1的上调不依赖FIT,而依赖于FIT与bHLH38/39/100/101形成的二聚体[54-55]。拟南芥中同时过表达FIT1bHLH38/39FRO2IRT1持续高表达,积累更多的铁。FIT与bHLH38/39/100/101中的任一个形成异源二聚体可激活IRT1FRO2启动子驱动的GUS表达[36, 55],表明IRT1FRO2是FIT与bHLH38/39/100/101的直接靶基因,而FIT具有表达和激活的作用。过表达bHLH104ILR3导致更强的缺铁耐受性,bHLH104和ILR3均能与bHLH Ib亚族基因或PYE启动子结合,作为这两个转录调控通路的上游调控子。虽然缺铁条件下bhlh104ilr3突变体中FIT的上调也受抑制,但没有检测到bHLH104或ILR3与FIT启动子的结合,表明存在其他的bHLH104和ILR3下游调控因子作用于FITILR3过表达导致叶片萎黄,而bHLH104的高表达植株bHLH104ox未表现萎黄,表明ILR3和bHLH104可能独立作用于不同的下游靶点[56]。Lin等利用酵母双杂交系统鉴定了FIT结合蛋白(FBP),FBP在根茎中表达,由FIT引起的负调节仅限于该组织,而其他FIT调控的基因,如IRT1FRO2,主要表达于根表皮,在fbp突变体中没有表现出转录上调[57]

3.2.2 POPEYE调控网络

Dinneny等[58]证明在拟南芥根的表皮细胞中主要诱导与金属离子运输和螯合相关的基因表达,而中柱细胞中主要富集信号通路和环境胁迫相关基因。Long等[52]证实拟南芥bHLH Ⅳ亚族的缺铁响应负调控因子POPEYE (PYE)在根中柱鞘细胞中发挥重要作用。bHLH104、bHLH115 (ILR3)和bHLH105是PYE的同源蛋白,也被称作PYE-LIKE (PYEL)蛋白[56, 59]。缺铁条件下,pye突变体根的生长受抑制,叶黄化、叶绿素含量、根铁还原酶活性和根际酸化能力均降低,而根和叶中的铁含量却升高。bhlh104bhlh105突变体的表现类似于pye突变体,bhlh115突变体对缺铁的敏感性增强。高表达bHLH104的株系表型与其突变体正好相反。过表达bHLH104ILR3可显著耐受缺铁,缺铁耐受和高铁含量可能部分归因于根部质量的增大。过表达bHLH105促进铁的积累。FITFRO2IRT1以及bHLH Ib亚族已知的铁调控基因在bhlh104ilr3突变体中下调。表明bHLH Ⅳc亚族成员具有相似的分子功能和不同的生物学功能。

染色质免疫共沉淀实验发现PYE可直接结合到NAS4FRO3ZIF1的启动子上,并下调其表达。PYE可与bHLH104/105或ILR3互作[52, 56],bHLH104/105或bHLH34/105的二聚体也参与PYE的调控[37]。过表达bHLH104导致植物体尤其是韧皮部的铁过度积累。在nas4x-2的韧皮部也发现了类似的铁超载,烟酰胺缺失不能将铁从韧皮部重新动员,导致铁滞留在韧皮部,幼叶缺铁[60]。菊花的CmbHLH1ILR3高度相似,在缺铁情况下调节铁摄取[44]。这些发现提示bHLH Ⅳc亚族转录因子在植物体内稳态中的功能可能是保守的。

3.2.3 BRUTUS调控网络

Long等[52]报道了另一个在根中柱鞘中表达并受缺铁强烈诱导的bHLH Ⅳc亚族成员E3连接酶基因BRUTUS (BTS)。缺铁条件下bts突变体的表型与pye恰好相反,在铁充足条件下积累更多的铁和具有更高的缺铁耐受性[61]。BTS具有泛素化功能并与铁结合,是一种潜在的铁传感器。BTS与PYEL蛋白互作,靶向bHLH105和bHLH115,由26S蛋白酶体介导降解[59]。实验证实bHLH105和bHLH115在体外可以被BTS降解,遗传分析也证实bHLH115由BTS负调控[59, 61],bHLH105和bHLH115的降解可以解释bts功能缺失植物的铁过度积累。bHLH104缺失降低bts的缺铁耐受,提示虽然都位于细胞核中并能够互作,但在铁稳态中BTS与bHLH104的作用相反[56]。此外,bhlh104突变体中应答缺铁下调的基因在BTS RNAi株系中上调,表明bHLH104和BTS可能共同在铁稳态的调节途径中起作用。缺铁条件下,bHLH Ⅳc亚族bHLH34/104/105/115激活PYEFITbHLH38/39/100/101的表达。FIT和bHLH38/39/100/101协同激活IRT1FRO2的表达。PYE直接调控铁分布相关基因ZIF1NAS4的表达。bHLH34/104/105/115在重叠表达上起协同作用,每个基因的独立表达具有特定的作用[37]bts能够积累过量的铁,缺铁诱导基因的表达显著增强,这些特征与水稻HRZs敲除植株非常相似,HRZ1/2具有E3连接酶活性,和BTS一样能结合Fe、Zn,证实了它们在植物中负调节铁摄取中的保守功能[61]

3.2.4 OsIRO和IDEF的正调控途径

水稻中缺铁胁迫诱导的顺式作用元件IDE1 (Iron deficiency responsive element 1)和IDE2首先被发现,协同参与了根、叶中的缺铁胁迫应答。随后,特异结合于该元件上的转录因子IDEF1 (IDE-binding factor 1)和IDEF2被发现[62]IDEF1IDEF2分别调控两个独立且几乎不重叠的缺铁诱导基因网络。IDEF1正向调控大多数已知的铁吸收相关基因。在缺铁胁迫的不同阶段,IDEF1调控的下游基因种类改变[63],而IDEF2调控的下游基因可能不变。IDEF1通过与铁吸收相关基因启动子区的CATGC元件结合来调节这些基因的表达,介导植物对缺铁的早期应答。IDEF1正调控OsIRO2的表达[64],与水稻IRO2启动子结合的核心序列为CACGTGG[21],意味着IRO2的转录激活也可能通过其启动子中的E-box进行。OsIRO2正调控铁吸收策略Ⅱ相关基因,包括OsNAS1OsNAS2OsNAAT1OsDMAS1OsTOM1OsYSL15等。过表达OsIRO2提高铁离子的吸收和转运,OsIRO2调控一些缺铁诱导转录因子的表达,但可能不是直接调控[42, 64]。过表达负调节因子OsIRO3抑制水稻缺铁响应基因的表达,表现出对低铁的超敏反应[53]IDEF2属于NAC转录因子家族的一个分支,能特异结合缺铁应答顺式元件IDE2。IDEF2在水稻根和叶中组成型表达,水稻中IDEF2的功能抑制导致根茎叶的铁分配异常[65]IDEF2正调控OsYSL2及其他一些基因,合理分配植株中的铁。

综上所述,bHLH转录因子可以通过至少4个途径调节植物的铁吸收转运。既有正调控机制,又有负调控作用,充分体现了对铁吸收的细微调节,也反映出bHLH转录因子在植物铁营养控制中的重要性和调控方式的多样性。阐明bHLH转录因子缺铁响应调控网络有助于深入了解植物应对缺铁机制,bHLH基因有可能作为作物生物强化的有效工具,深入研究其特性可以为缺铁耐受作物或富铁作物的培育提供设计策略。

4 展望

植物bHLH转录因子家族成员众多,在不同代谢途径中发挥调节功能,参与缺铁调控的bHLH转录因子的研究仅在两种模式植物拟南芥和水稻中取得了一定的成果。笔者的研究团队对铁胁迫的紫花苜蓿、大豆、欧李进行转录组分析,发现紫花苜蓿中bHLH041bHLH130bHLH93bHLH115响应铁处理表达上调,克隆获得了bHLH115;在大豆缺铁处理敏感和耐受品种中多个bHLH转录因子存在表达差异,其中bHLH47转录因子在大豆缺铁处理耐受品种中表达上调;长期缺铁处理的木本植物欧李bHLH转录因子表达下调。这些转录因子的功能有待进一步研究,以上结果也表明继续发掘缺铁响应bHLH转录因子具有重要意义。

在今后的研究中,对于已知的缺铁响应bHLH转录因子,需要进一步研究其突变体的表型和对金属的依赖性,区分不同解剖学部位中的响应程度;确定哪些bHLH转录因子在功能上相似,通过构建三或四突变体、利用敲除实验分析缺失基因的功能;还需要鉴定潜在的靶基因,明确调控的上下游基因,解析bHLH蛋白的互作类型及效应,补充调控网络的细节;此外,需要进一步了解bHLH蛋白的三维结构变化,进而了解其在代谢通路过程中如何发挥作用;鉴于bHLH转录因子响应胁迫的多样性以及乙烯、生长素、油菜素类固醇、茉莉酸、ABA和细胞分裂素等激素在植物铁营养中的调节作用,激素调节途径与bHLH转录因子调控网络是否存在重叠、协同或拮抗效应,也是有待解决的问题。

参考文献
[1] Hänsch R, Mendel RR. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol, 2009, 12(3): 259–266. DOI: 10.1016/j.pbi.2009.05.006
[2] Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press, 1995.
[3] Guerinot ML, Yi Y. Iron: Nutritious, noxious, and not readily available. Plant Physiol, 1994, 104(3): 815–820. DOI: 10.1104/pp.104.3.815
[4] Jeong JY, Guerinot ML. Homing in on iron homeostasis in plants. Trends Plant Sci, 2009, 14(5): 280–285. DOI: 10.1016/j.tplants.2009.02.006
[5] Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol, 2012, 63(1): 131–152. DOI: 10.1146/annurev-arplant-042811-105522
[6] Guerinot ML. Improving rice yields——ironing out the details. Nat Biotechnol, 2001, 19(5): 417–418. DOI: 10.1038/88067
[7] Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci, 2015, 20(2): 124–133. DOI: 10.1016/j.tplants.2014.11.004
[8] Rumen I, Tzvetina B, Petra B. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol Plant, 2012, 5(1): 27–42. DOI: 10.1093/mp/ssr065
[9] Hell R, Stephan UW. Iron uptake, trafficking and homeostasis in plants. Planta, 2003, 216(4): 541–551.
[10] Walker EL, Connolly EL. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants. Curr Opin Plant Biol, 2008, 11(5): 530–535. DOI: 10.1016/j.pbi.2008.06.013
[11] Hindt MN, Guerinot ML. Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta-Mol Cell Res, 2012, 1823(9): 1521–1530. DOI: 10.1016/j.bbamcr.2012.03.010
[12] Santi S, Schmidt W. Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol, 2010, 183(4): 1072–1084.
[13] Henriques R, Jásik J, Klein M, et al. Knock-out of Arabidopsis metal transporter gene IRT1 results in iron deficiency accompanied by cell differentiation defects. Plant Mol Biol, 2002, 50(4/5): 587–597. DOI: 10.1023/A:1019942200164
[14] Varotto C, Maiwald D, Pesaresi P, et al. The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J, 2010, 31(5): 589–599.
[15] Vert G, Grotz N, Dédaldéchamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell, 2002, 14(6): 1223–1233. DOI: 10.1105/tpc.001388
[16] Curie C, Briat JF. Iron transport and signaling in plants. Ann Rev Plant Biol, 2003, 54(1): 183–206. DOI: 10.1146/annurev.arplant.54.031902.135018
[17] Rogers EE, Guerinot ML. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell, 2002, 14(8): 1787–1799. DOI: 10.1105/tpc.001495
[18] Curie C, Cassin G, Couch D, et al. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot, 2009, 103(1): 1–11. DOI: 10.1093/aob/mcn207
[19] Kobayashi T, Nakanishi H, Nishizawa NK. Recent insights into iron homeostasis and their application in graminaceous crops. Proc Jpn Acad Ser B Phys Biol Sci, 2010, 86(9): 900–913. DOI: 10.2183/pjab.86.900
[20] Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J: Cell Mol Biol, 2011, 66(1): 94–116.
[21] Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants. Mol Biol Evol, 2010, 27(4): 862–874. DOI: 10.1093/molbev/msp288
[22] Filiz E, Vatansever R, Ozyigit II. Dissecting a co-expression network of basic helix-loop-helix (bHLH) genes from phosphate (Pi)-starved soybean (Glycine max). Plant Gene, 2017, 9: 19–25. DOI: 10.1016/j.plgene.2016.12.001
[23] Murre C, Bain G, van Dijk MA, et al. Structure and function of helix-loop-helix proteins. Biochim Biophys Acta-Gene Struct Expr, 1994, 1218(2): 129–135. DOI: 10.1016/0167-4781(94)90001-9
[24] Li XX, Duan XP, Jiang HX, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol, 2006, 141(4): 1167–1184. DOI: 10.1104/pp.106.080580
[25] Roig-Villanova I, Bou-Torrent J, Galstyan A, et al. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. EMBO J, 2007, 26(22): 4756–4567. DOI: 10.1038/sj.emboj.7601890
[26] Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15(8): 1749–1770. DOI: 10.1105/tpc.013839
[27] Hudson KA, Hudson ME. A classification of basic helix-loop-helix transcription factors of soybean. Int J Genomics, 2015, 2015: 603182.
[28] Wang C, Lan HY. Research progresses on functions of plant bHLH transcription factors involved in abiotic stresses. Life Sci Res, 2016, 20(4): 358–364. (in Chinese).
王翠, 兰海燕. 植物bHLH转录因子在非生物胁迫中的功能研究进展. 生命科学研究, 2016, 20(4): 358-364.
[29] Arnaud N, Girin T, Sorefan K, et al. Gibberellins control fruit patterning in Arabidopsis thaliana. Genes Dev, 2010, 24(19): 2127–2132. DOI: 10.1101/gad.593410
[30] Qi TQ, Wang JJ, Huang H, et al. Regulation of jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell, 2015, 27(6): 1634–1649. DOI: 10.1105/tpc.15.00110
[31] Zhao FL, Li G, Hu PP, et al. Identification of basic/helix-loop-helix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant. Sci Rep, 2018, 8: 2721. DOI: 10.1038/s41598-018-21136-z
[32] Sharma N, Xin RJ, Kim DH, et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day in Arabidopsis. Development, 2016, 143(4): 682–690. DOI: 10.1242/dev.128595
[33] Bernhardt C, Lee MM, Gonzalez A, et al. The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development, 2003, 130(26): 6431–6439. DOI: 10.1242/dev.00880
[34] Liu WW, Tai HH, Li SS, et al. bHLH122 is important for drought and osmotic stress resistance in Arabidopsis and in the repression of ABA catabolism. New Phytol, 2014, 201(4): 1192–1204. DOI: 10.1111/nph.12607
[35] Yang TR, Yao SF, Hao L, et al. Wheat bHLH-type transcription factor gene TabHLH1 is crucial in mediating osmotic stresses tolerance through modulating largely the ABA-associated pathway. Plant Cell Rep, 2016, 35(11): 2309–2323. DOI: 10.1007/s00299-016-2036-5
[36] Yuan YX, Wu HL, Wang N, et al. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res, 2008, 18(3): 385–397. DOI: 10.1038/cr.2008.26
[37] Li XL, Zhang HM, Ai Q, et al. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol, 2016, 170(4): 2478–2493. DOI: 10.1104/pp.15.01827
[38] Ling HQ, Bauer P, Bereczky Z, et al. The tomato fer gene encoding a bHLH protein controls iron-uptake responses in roots. Proc Natl Acad Sci USA, 2002, 99(21): 13938–13943. DOI: 10.1073/pnas.212448699
[39] Du J, Huang ZG, Wang B, et al. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato. Ann Bot, 2015, 116(1): 23–24. DOI: 10.1093/aob/mcv058
[40] Li L, Gao WW, Peng Q, et al. Two soybean bHLH factors regulate response to iron deficiency. J Integr Plant Biol, 2018, 60(7): 608–622. DOI: 10.1111/jipb.v60.7
[41] Wang L, Ying YH, Narsai R, et al. Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in Oryza sativa. Plant Cell Environ, 2013, 36(1): 224–236. DOI: 10.1111/pce.2013.36.issue-1
[42] Ogo Y, Itai RN, Nakanishi H, et al. The rice bHLH protein OsIRO2 is an essential regulator of the genes involved in Fe uptake under Fe-deficient conditions. Plant J, 2007, 51(3): 366–377. DOI: 10.1111/j.1365-313X.2007.03149.x
[43] Xu HM, Wang Y, Chen F, et al. Isolation and characterization of the iron-regulated MxbHLH01 gene in Malus xiaojinensis. Plant Mol Biol Rep, 2011, 29(4): 936–942. DOI: 10.1007/s11105-011-0305-6
[44] Zhao M, Song AP, Li PL, et al. A bHLH transcription factor regulates iron intake under Fe deficiency in chrysanthemum. Sci Rep, 2014, 4: 6694.
[45] Zhao Q, Ren YR, Wang QJ, et al. Overexpression of MdbHLH104 gene enhances the tolerance to iron deficiency in apple. Plant Biotechnol J, 2016, 14(7): 1633–1645. DOI: 10.1111/pbi.2016.14.issue-7
[46] Huang DQ, Dai WH. Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus. Plant Cell Rep, 2015, 34(7): 1211–1224. DOI: 10.1007/s00299-015-1779-8
[47] Brumbarova T, Bauer P. Iron-mediated control of the basic helix-loop-helix protein FER, a regulator of iron uptake in tomato. Plant Physiol, 2005, 137(3): 1018–1026. DOI: 10.1104/pp.104.054270
[48] Yuan YX, Zhang J, Wang DW, et al. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res, 2005, 15(8): 613–621. DOI: 10.1038/sj.cr.7290331
[49] Bauer P, Ling HQ, Guerinot ML. FIT, the FER-LIKE iron deficiency induced transcription factor in Arabidopsis. Plant Physiol Biochem, 2007, 45(5): 260–261. DOI: 10.1016/j.plaphy.2007.03.006
[50] Yan C, Lin CC, Man C, et al. Four IVa bHLH transcription factors are novel interactors of FIT and mediate JA inhibition of iron uptake in Arabidopsis. Mol Plant, 2018, 11(9): 1166–1183. DOI: 10.1016/j.molp.2018.06.005
[51] Wang HY, Klatte M, Jakoby M, et al. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta, 2007, 226(4): 897–908. DOI: 10.1007/s00425-007-0535-x
[52] Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. The Plant Cell, 2010, 22(7): 2219–2236. DOI: 10.1105/tpc.110.074096
[53] Zheng LQ, Ying YH, Lu W, et al. Identification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biol, 2010, 10: 166. DOI: 10.1186/1471-2229-10-166
[54] Wu HL, Chen CL, Du J, et al. Co-overexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis- enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol, 2012, 158(2): 790–800. DOI: 10.1104/pp.111.190983
[55] Sivitz AB, Hermand V, Curie C, et al. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PLoS ONE, 2012, 7(9): 44843. DOI: 10.1371/journal.pone.0044843
[56] Zhang J, Liu B, Li MS, et al. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell, 2015, 27(3): 787–805. DOI: 10.1105/tpc.114.132704
[57] Lin CC, Cui Y, Cui M, et al. A FIT-binding protein is involved in modulating iron and zinc homeostasis in Arabidopsis. Plant Cell Environ, 2018, 41(7): 1698–1714. DOI: 10.1111/pce.v41.7
[58] Dinneny JR, Long TA, Wang JY, et al. Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science, 2008, 320(5878): 942–945. DOI: 10.1126/science.1153795
[59] Liang G, Zhang HM, Li XL, et al. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot, 2017, 68(7): 1743–1755. DOI: 10.1093/jxb/erx043
[60] Schuler M, Rellán-Álvarez R, Fink-Straube C, et al. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. The Plant Cell, 2012, 24(6): 2380–2400. DOI: 10.1105/tpc.112.099077
[61] Selote D, Samira R, Matthiadis A, et al. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol, 2015, 167(1): 273–286. DOI: 10.1104/pp.114.250837
[62] Kobayashi T, Itai RN, Ogo Y, et al. The rice transcription factor IDEF1 is essential for the early response to iron deficiency, and induces vegetative expression of late embryogenesis abundant genes. Plant J, 2009, 60(6): 948–961. DOI: 10.1111/tpj.2009.60.issue-6
[63] Kobayashi T, Nakayama Y, Itai RN, et al. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J, 2003, 36(6): 780–793. DOI: 10.1046/j.1365-313X.2003.01920.x
[64] Ogo Y, Itai RN, Nakanishi H, et al. Isolation and characterization of IRO2, a novel iron-regulated bHLH transcription factor in graminaceous plants. J Exp Bot, 2006, 57(11): 2867–2878. DOI: 10.1093/jxb/erl054
[65] Ogo Y, Kobayashi T, Nakanishi IR, et al. A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J Biol Chem, 2008, 283(19): 13407–13417. DOI: 10.1074/jbc.M708732200