生物工程学报  2017, Vol. 33 Issue (7): 1075-1084
http://dx.doi.org/10.13345/j.cjb.160480
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

贾连智, 李廷栋, 葛胜祥
Jia Lianzhi, Li Tingdong, Ge Shengxiang
轮状病毒VP4亚单位疫苗研究进展
Research progress in rotavirus VP4 subunit vaccine
生物工程学报, 2017, 33(7): 1075-1084
Chinese Journal of Biotechnology, 2017, 33(7): 1075-1084
10.13345/j.cjb.160480

文章历史

Received: December 14, 2016
Accepted: February 17, 2017
轮状病毒VP4亚单位疫苗研究进展
贾连智, 李廷栋, 葛胜祥     
厦门大学公共卫生学院 国家传染病诊断试剂与疫苗工程技术研究中心 分子疫苗学与分子诊断学国家重点实验室,福建 厦门 361102
收稿日期:2016-12-14; 接收日期:2017-02-17
基金项目:国家自然科学基金(No. 81501741) 资助
摘要:轮状病毒是全球范围内导致5岁以下婴幼儿严重腹泻的主要病原体,造成了巨大的经济负担和社会负担。疫苗预防接种是控制轮状病毒感染最为有效的手段,但在轮状病毒导致的死亡率较高的非洲和亚洲部分低收入国家,目前已经上市的轮状病毒疫苗的有效性较低,且会增加肠套叠的风险。更加安全、有效的轮状病毒疫苗对于降低轮状病毒感染导致的发病率和死亡率具有重要意义。目前,各国科研人员试图从多个方面提高轮状病毒疫苗的有效性,非复制型基因工程亚单位疫苗是目前轮状病毒疫苗研究的主要方向。文中就目前轮状病毒亚单位疫苗,特别是基于VP4蛋白的亚单位疫苗的研究进展进行了综述,以期对轮状病毒疫苗的发展提供借鉴意义。
关键词轮状病毒     VP4     亚单位疫苗     腹泻    
Research progress in rotavirus VP4 subunit vaccine
Lianzhi Jia, Tingdong Li, Shengxiang Ge     
State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infection Disease, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
Abstract: Rotaviruses are leading causes of worldwide acute diarrhea in children younger than 5 years old, with severe consequence of social and economic burden. Vaccination is the most effective way to control rotavirus infection, however, the licensed rotavirus vaccines are ineffective in some low-income countries of Africa and Asia, where the mortality caused by rotavirus is higher than other areas. In addition, there are also safety concerns such as increased risk of intussusception. Therefore, it is urgent to improve the efficiency and safety of rotavirus vaccine to reduce the morbidity and mortality caused by rotavirus. Till now, many efforts are made to improve the effectiveness of rotavirus vaccines, and the inactive vaccine becomes the main trend in the research of rotavirus vaccine. The developments in recombinant rotavirus vaccines, especially in VP4 subunit vaccines are summarized in this review, and it could be helpful to develop effective recombinant rotavirus vaccines in further studies.
Key words: rotavirus     VP4     subunit vaccines     diarrhea    

轮状病毒是全球范围内引起5岁以下婴幼儿腹泻的主要病原体,主要通过粪口途径传播,临床症状包括呕吐、发热、水样便等,严重时会由于脱水导致死亡[1]。全球范围内,每年由于轮状病毒感染导致的死亡病例高达40–60万[2],轮状病毒疫苗也被WHO列为优先发展的十大疫苗之一。目前已经有两种轮状病毒疫苗(Rotateq[3]和Rotarix[4])在全球范围内推广使用,70多个国家已经将轮状病毒疫苗纳入免疫规划,另有多种轮状病毒疫苗在区域范围内使用[5-6],几种候选疫苗也正在进行临床试验[7-10] (表 1)。随着轮状病毒疫苗的推广,轮状病毒导致的年死亡病例由40–60万下降到20万左右[11]。轮状病毒导致的死亡主要发生在非洲和亚洲等不发达的国家和地区,但是,在这些国家和地区已经上市的轮状病毒疫苗的有效性仅为50%左右,显著低于发达国家[12]。同时,目前已经上市的轮状病毒疫苗均为减毒活疫苗,会增加肠套叠的风险[13]。因此,更加安全、有效的轮状病毒亚单位疫苗的研究对于进一步降低轮状病毒导致的发病率和死亡率具有重要意义。相比减毒活疫苗,非复制型疫苗,特别是亚单位疫苗安全性更高,是目前轮状病毒疫苗研究的主要方向。

表 1 轮状病毒现有疫苗及候选疫苗的研究 Table 1 Available rotavirus vaccines and rotavirus vaccine candidates
Rotavirus vaccines Properties Status References
Rotarix Monovalent rotavirus strain G1P[8] RIX4414 Licensed [3]
Rotateq Pentavalent reassortant, G1–G4P[8], G6P[7] vaccine of five human-bovine reassortant Licensed [4]
LLR G10P[12] Licensed in China [5]
Rotavin-M1 G1P[8] licensed in Vietnam [6]
BRV-PV UK reassortant, G1–G4 and G9 Phase Ⅲ [9]
RV3 G3P[6] Phase Ⅱ [7]
116E G9P[11] Licensed [8]
P2-VP8 G1P[8], fusion with a universal T epitope of tetanus toxin Phase Ⅱ [10]
VLPs Virus-like particles composed of VP2 and VP6, with or without VP4 and VP7 Tested in various animals [73]
Subunit proteins VP6, VP4, VP7, NSP4 Tested in various animals [36-37, 40, 51]
1 轮状病毒结构及免疫保护机制

轮状病毒属于呼肠孤病毒科,轮状病毒属,无包膜二十面体结构,直径为70 nm,其基因组含11条双链RNA片段,分别编码6种结构蛋白(VP1–4、VP6、VP7) 和6种非结构蛋白(NSP1–6)。轮状病毒具有3层衣壳结构,分别是由VP1、VP2和VP3三种结构蛋白构成的内衣壳,由VP6构成的中间衣壳,以及由糖蛋白VP7和刺突蛋白VP4构成的外衣壳[14]

目前,轮状病毒的免疫保护机制尚不完全清楚,一般认为,固有免疫和获得性免疫在轮状病毒的免疫保护中均发挥着重要作用。轮状病毒感染后,血清中IL-6、IL-10以及IFN-γ水平均会明显升高,且IFN-γ能够抑制轮状病毒的复制[15]。同时,机体会产生针对VP2、VP4、VP6、VP7以及NSP4等蛋白的抗体。研究表明,针对VP4蛋白的抗体可以阻断轮状病毒的吸附与入胞,而针对VP7蛋白的抗体则能够阻断轮状病毒的脱壳,从而抑制轮状病毒的复制[16]。尽管VP6不是中和抗原,但可以刺激机体产生IgA,IgA与pIgR结合,可以由肠基底侧转运至肠腔,在转运过程中可以与脱去外衣壳的双层病毒颗粒结合,从而抑制轮状病毒的转录和复制[17]。自然感染对再次发生轮状病毒感染性腹泻具有一定的保护性,一般情况下,再次感染后无明显症状或症状较轻[18]。Chiba等的研究表明,自然感染的保护性与高滴度的中和抗体有关[19],而后续的研究表明,自然感染的保护性与IgA抗体的关系更密切[20]。目前已经上市的轮状病毒疫苗的临床结果也表明,轮状病毒疫苗的免疫保护性与IgA的水平存在一定的相关性[21]。细胞免疫在预防轮状病毒的感染中也发挥着重要作用,但目前仅限于动物模型的研究,与自然感染以及疫苗接种后的保护性的关系尚不清楚。轮状病毒免疫保护机制的研究为发展不同类型的轮状病毒疫苗奠定了理论基础。

2 轮状病毒基因工程疫苗研究进展

轮状病毒基因工程疫苗的研究始于20世纪80年代,包括病毒样颗粒(VLP)疫苗[22]、重组抗原亚单位疫苗(VP4[23]、VP6[24]、VP7[25]、NSP4[26])、多肽疫苗[27]以及核酸疫苗[28]等,其中研究最早的是合成肽疫苗,但其免疫原性较低[27],研究最多的是病毒样颗粒疫苗,而进展最快的则是基于VP4蛋白的亚单位疫苗,目前已经完成了Ⅰ期临床[10]

轮状病毒VLP疫苗[29-35]、重组VP6[36, 37]均在小鼠模型上能够抑制轮状病毒的复制和排毒,具有较高的免疫保护性,但是VLP在家兔和无菌猪模型中免疫保护性较低[31, 38]。另外,研究表明,针对NSP4蛋白的抗体可以减轻轮状病毒导致的腹泻[39]。VP7是轮状病毒的主要中和抗原[40],但是,重组表达的VP7蛋白不能刺激机体产生高滴度中和抗体[41],这可能与VP7为糖蛋白,中和表位构象依赖性较强,而重组表达的VP7不能形成正确构象有关[42]

与VP7不同,VP4蛋白没有糖基化修饰,相比VP7更容易表达;但是VP4作为刺突蛋白,介导了轮状病毒的吸附和入胞过程,其抗体可以阻断轮状病毒的吸附和入胞过程;同时,人源毒株中常见的P基因型(VP4) 仅P[8]、P[4]和P[6]三种,且P[8]占80%以上,而常见的G基因型(VP7) 有G1–G4以及G9五种[43]。尽管自然感染以及接种减毒苗后针对VP4的中和抗体水平较低[44],但重组表达的VP4的免疫原性并不低于VP7[45],这可能与天然病毒中VP4蛋白的含量较低以及VP5部分不能充分暴露有关。同时,由于自然感染后针对VP4蛋白的抗体水平较低,母源抗体对基于VP4蛋白的疫苗的干扰也相对较小。因此,相比VP7蛋白,VP4可能更适合作为轮状病毒基因工程亚单位疫苗的候选抗原。

3 重组VP4亚单位疫苗的研究 3.1 VP4及其截短蛋白的研究

VP4蛋白由776个氨基酸组成(人源毒株为775aa),胰蛋白酶可以将VP4切割形成VP8*和VP5*,并提高轮状病毒的感染性[46]。VP8蛋白具有血凝素活性,核心结构由aa65–223组成,通过N端的柔性区插入VP5内部。VP8蛋白可以与细胞表面的唾液酸受体结合从而介导轮状病毒的吸附[47]。轮状病毒吸附后,VP5蛋白可以与多个细胞受体相互作用并介导轮状病毒的入胞。研究表明,针对VP8蛋白和VP5蛋白的抗体均可中和轮状病毒的感染[48]

1987年,Arias等通过大肠杆菌将VP4蛋白的N端361个氨基酸(aa42–387) 与噬菌体聚合酶MS2融合表达,发现MS2-VP8’能够刺激小鼠产生中和抗体[49] (表 2)。1990年,Mackow等利用杆状病毒-昆虫细胞表达系统表达了VP4蛋白[51],该蛋白可以被胰酶酶切形成VP8* (aa1–246) 及VP5(1)* (aa248–474)。小鼠模型的结果表明,VP4、VP8*和VP5 (1)*均能刺激小鼠产生中和抗体,且VP5 (1)*免疫组子代乳鼠腹泻的比例显著低于VP8*免疫组,说明针对VP5蛋白的抗体在体内可以更好地介导免疫保护[48],这与Matsui等之前的研究结果是一致的[52]。但是,多项研究表明,VP5的免疫原性较低[50, 53],而且重组表达的VP5以包涵体形式存在,不能有效地刺激机体产生中和抗体[50],因此,之后的研究主要集中于VP8蛋白。

表 2 VP4及其截短蛋白在动物模型中免疫原性和免疫保护性的研究 Table 2 The immunogcnicity and protective efficacy of VP4 and truncated VP4 in animal models
Antigens Strains VP4 peptides Adjuvants Immunization routes Animal models Neutralizing anlibody Diarrhea protective References
MS2-VP8’ SA11 42-387 Freund’s Subcutaneously Mice 1:8 000 - [49]
MS2-VP5' SA11 389-776 Freund’s Subcutaneously Mice 1:1 000 - [50]
VP4 RRV 1-776 Freund’s Intraperitoneal CD-Ⅰ mouse 1:256-1:102 400 100% [48, 71]
VP5 ⑴* RRV 247-474 Freund's Intrapcritoneal Maternal antibody 1:640-1:2 560 66%-100% [48]
VP8* RRV 1-246 Freund's Intraperitoneal Model 1:640-1:10 240 0%-76% [48]
rVP8* C486 1-231 Freund’s Subcutaneously Rabbit 1:1 250 - [54]
rVP8* C486 1-231 VSA Subcutaneously Cattle 1:510 - [54]
rVP8*-GST Wa 1-231 Freund’s Intramuscular Chicken 1:8 000-1:48 000 - [55]
△VP8 Wa, DS-1, 1076 65-223 Aluminum
phosphate
Intramuscular Guinea pig Wa:1:7 680
DS-1: 1:5 120
1076: 1:1 280
- [23]
VP8 LLR 1-231 Freund’s Subcutaneously BALB/c mouse 1:8 192 100% [54-55, 57]
VP8-1 LLR 26 231 Freund's Subcutaneously Maternal antibody 1:8 000 100% [57]
△VP8 LLR 65-231 Freund's Subcutaneously Model 1:512 0% [57]

全长的VP8蛋白在大肠杆菌中也以包涵体的形式表达,但其刺激小鼠产生中和抗体的能力与真核表达的VP8蛋白无显著差异,免疫牛和家兔也能产生高滴度的中和抗体[54]。将VP8蛋白与GST融合表达则可以获得可溶性的VP8蛋白,免疫鸡后可以产生高滴度的卵黄抗体[55]。2005年,Mark等将VP8蛋白核心区(aa65–224) 与GST融合表达并解析了VP8核心区的结构[56]。2012年,闻晓波等发现,在仅融合6个组氨酸的情况下,VP8核心区ΔVP8也能够以可溶形式高效表达,该蛋白在豚鼠模型中可产生高滴度的中和抗体,但不能有效地刺激小鼠产生中和抗体[23]。2015年Xue等发现,将VP8核心区的N端进一步延长至起始于26位氨基酸时,在没有融合蛋白的情况下其可溶性表达量与VP8核心区无显著差异,但其免疫中和活性显著高于ΔVP8。这可能有两方面的原因,一方面,VP8蛋白N端柔性区aa26–65之间可能存在中和表位,这与Jennifer等2003年通过合成肽的方式发现aa55–66位可结合免疫血清中的中和抗体相一致;另一方面,N端柔性区的存在可能使VP8核心区的构象更接近其在天然病毒中的构象[57]

目前,轮状VP8蛋白相关的研究已经较为清楚,但是,VP4蛋白相比VP8*和VP5*具有更高的免疫保护性,一方面,胰蛋白酶敏感区可以刺激机体产生保护性抗体[58];另一方面,VP8存在的条件下,VP5可能能够被更好地递呈从而产生更高滴度的保护性抗体。同时,VP5可以刺激机体产生具有交叉中和活性的抗体[48]。因此,包含VP5结构域的VP4蛋白更适合成为轮状病毒候选基因工程疫苗。

3.2 VP4与外源蛋白的融合表达

尽管截短的VP4蛋白可溶性表达量高,且在弗氏佐剂条件下可以刺激机体产生较高滴度的中和抗体,但是,在铝佐剂条件下,其免疫原性较低,在小鼠模型中不能有效地刺激机体产生中和抗体[59]。为了进一步增强VP4的免疫原性,以介导更强的免疫保护性,研究人员尝试将VP4与能够增强免疫原性的外源蛋白进行融合表达,如破伤风毒素T细胞表位(P2)、霍乱毒素B亚基(CTB)、大肠杆菌不耐热毒素B亚基(LTB)、布鲁氏杆菌二氧四氢喋啶合成酶(BLS)以及颗粒性蛋白鼠多瘤病毒VP1和截短的诺如病毒衣壳蛋白(可形成P颗粒)等(表 3)。

表 3 VP4融合表达蛋白在动物模型中免疫原性和免疫保护性的研究 Table 3 The immunogenicity and protective efficacy of VP4 fusion proteins in animal models
Fusion proteins VP4 peptides Strains Location of fusion protein Neutralizing antibody Diarrhea and virus shedding References
BLS aa62-224 C486 N terminal BLS-VP8d: 1:794
VP8d: 1:126
BLS-VP8 group significantly decreased Diarrhea [61]
P Particle aa65-222 EDIM Insert in the middle No difference between PP-mVP8 and mVP8 Protection in virus shedding, no difference between PP-mVP8 and mVP8 [62]
aa65-223 Wa Insert in the middle Intranasal: PP-VP8 > VP8
Subcutaneously: PP-VP8 > VP8
No protection effect was observed for EDIM infection
P2 aa65-223 Wa, 1076 N terminal P2-P[8]AVP8: 1:10 240
P[8]AVP8: 1:7 241
P2-P[6]AVP8: 1:57 926
P[6]AVP8: 1:57 926
- [63-64, 71]
VP1 aa65-224 DS-1 Insert in the middle - - [72]
CTB aa26-231 LLR N/C terminal CTB-VP8-Ⅰ: 1:5 026
VP8-1-CTB: 1:3 411
VP8-1: 1:596
Protection in diarrhea, CTB-VP8 was better than VP8-CTB [59]

在这些融合抗原中,CTB和BLS能够显著提高VP4蛋白的免疫原性,而诺如病毒P蛋白和破伤风毒素T细胞表位P2以及LTB对VP4免疫原性的影响相对较小[60]。VP8与CTB融合表达,免疫三针后血清中和抗体滴度相比单纯的VP8蛋白可以提高4–8倍。相比N端融合,VP8融合于CTB蛋白C端的免疫血清中和滴度更高,CTB-VP8蛋白免疫组子代乳鼠的腹泻程度也显著低于VP8-CTB和单独的VP8[59]。VP8与BLS融合表达,其免疫血清中和滴度可提高1个数量级以上,且融合蛋白免疫对子代小鼠的被动保护效果显著优于单独的VP8免疫组及混合免疫组[61]。PP-VP8仅在滴鼻免疫条件下能够显著提高VP8的免疫原性,但经皮下途径进行免疫时,PP-VP8与VP8的免疫原性无显著差异[62]

P2-VP8仅在免疫两针后具有更高的血清抗体滴度,免疫三针后则与VP8无显著差异[63-64]。尽管如此,P2-VP8的研究进展最快,是目前唯一完成Ⅰ期临床的轮状病毒基因工程疫苗。Ⅰ期临床的结果显示,三针免疫后,所有志愿者的血清IgA水平均出现4倍及以上升高。但是,中和抗体的应答率仅为50%–66.7%,此外,Ⅰ期临床实验受试人群为18–45周岁的成年人,在免疫系统发育尚不完全的婴幼儿中,P2-VP8的免疫原性和免疫保护性还需要进一步的研究[10]

3.3 其他

近年来,也有研究团队通过植物表达轮状病毒VP8蛋白。2004年,Filgueira等以烟草花叶病毒作为载体在烟草中表达了牛轮状病毒VP8蛋白,并且在小鼠模型中体现出一定的免疫保护性[65]。2011年,Lantz等通过转基因的方式在烟草的叶绿体中表达了牛轮状病毒的VP8蛋白,该蛋白免疫小鼠可产生高滴度的中和抗体,并且对子代乳鼠的腹泻具有80%以上的保护率[66]。2015年Federico等发现,将VP8与BLS融合表达免疫母鸡能够产生高滴度的卵黄抗体,但是冻干后其免疫原性有一定程度的降低[67]。尽管植物的生产成本较低,但是目前植物表达系统尚不完善,病毒载体和转基因的方式均存在一定的局限性,即使目标蛋白能够成功表达,提取和纯化的难度也很大,因此,通过转基因植物生产疫苗还存在一定的挑战。

此外,通过可食用的乳酸菌也可以表达轮状病毒的VP4蛋白及其VP8结构域,通过口服方式进行免疫后,这些改造后的乳酸菌可以刺激小鼠产生一定的中和抗体,但是滴度较低[60, 68-69]。因此,尽管乳酸菌提供了一种安全、简便的方式,为发展新型的黏膜免疫疫苗提供了新的选择,但是,由于其免疫原性较低,是否能够成为候选疫苗还有待进一步研究。

4 结语

轮状病毒感染是一个全球性的公共卫生问题,轮状病毒疫苗已经上市并纳入多个国家的免疫规划。随着轮状病毒疫苗的接种,轮状病毒导致的发病率和死亡率显著下降,但是,在非洲和亚洲等轮状病毒导致的死亡率较高的发展中国家,轮状病毒疫苗的保护率仍有待进一步提高。高滴度的母源抗体是导致轮状病毒减毒疫苗有效性低的主要因素之一。尽管VP4介导了轮状病毒的吸附和入胞过程,自然感染中产生的针对VP4蛋白的抗体远低于VP7。因此,基于VP4蛋白的轮状病毒疫苗有希望能够打破母源抗体的干扰,在母源抗体较高的发展中国家和地区产生更好的免疫保护效果。但是,VP4亚单位疫苗的研究目前仍存在以下三方面的问题:1) 不同于天然病毒和VLP疫苗,VP4亚单位疫苗的免疫原性较弱;2) 不同毒株受体识别的差异可能会导致轮状病毒疫苗对不同毒株保护性的差异;3) 缺少有效的动物模型。轮状病毒基因工程疫苗在不同动物模型中的免疫保护性差异较大,且缺少能够有效反映轮状病毒疫苗有效性的血清学指标,限制了轮状病毒疫苗研究。此外,新的流行毒株的出现也为轮状病毒疫苗的研究带来了挑战。因此,进一步提高VP4蛋白的免疫原性,加快轮状病毒动物模型的研究才能使VP4亚单位疫苗成为可能。

参考文献
[1] Bernstein DI. Rotavirus overview. Pediatr Infect Dis J, 2009, 28(3 Suppl): S50–S53.
[2] Tate JE, Burton AH, Boschi-Pinto C, et al. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis, 2012, 12(2): 136–141. DOI: 10.1016/S1473-3099(11)70253-5
[3] Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 376(9741): 606–614. DOI: 10.1016/S0140-6736(10)60889-6
[4] Bar-Zeev N, Kapanda L, Tate JE, et al. Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll-out: an observational and case-control study. Lancet Infect Dis, 2015, 15(4): 422–428. DOI: 10.1016/S1473-3099(14)71060-6
[5] Zhen SS, Li Y, Wang SM, et al. Effectiveness of the live attenuated rotavirus vaccine produced by a domestic manufacturer in China studied using a population-based case-control design. Emerg Microbes Infect, 2015, 4(10): e64. DOI: 10.1038/emi.2015.64
[6] Anh DD, Van Trang N, Thiem VD, et al. A dose-escalation safety and immunogenicity study of a new live attenuated human rotavirus vaccine (Rotavin-M1) in Vietnamese children. Vaccine, 2012, 30(Suppl 1): A114–A121.
[7] Bines JE, Danchin M, Jackson P, et al. Safety and immunogenicity of RV3-BB human neonatal rotavirus vaccine administered at birth or in infancy: a randomised, double-blind, placebo-controlled trial. Lancet Infect Dis, 2015, 15(12): 1389–1397. DOI: 10.1016/S1473-3099(15)00227-3
[8] Bhandari N, Rongsen-Chandola T, Bavdekar A, et al. Efficacy of a monovalent human-bovine (116E) rotavirus vaccine in Indian children in the second year of life. Vaccine, 2014, 32(Suppl 1): A110–A116.
[9] Zade JK, Kulkarni PS, Desai SA, et al. Bovine rotavirus pentavalent vaccine development in India. Vaccine, 2014, 32(Suppl 1): A124–A128.
[10] Fix AD, Harro C, McNeal M, et al. Safety and immunogenicity of a parenterally administered rotavirus VP8 subunit vaccine in healthy adults. Vaccine, 2015, 33(31): 3766–3772. DOI: 10.1016/j.vaccine.2015.05.024
[11] Tate JE, Burton AH, Boschi-Pinto C, et al. Global, regional, and national estimates of rotavirus mortality in children < 5 Years of Age, 2000-2013. Clin Infect Dis, 2016, 62(Suppl 2): S96–S105. DOI: 10.1093/cid/civ1013
[12] Munos MK, Walker CL, Black RE. The effect of rotavirus vaccine on diarrhoea mortality. Int J Epidemiol, 2010, 39(Suppl 1): i56–i62.
[13] Anderson EJ, Sederdahl BK. Intussusception risk increased after rotavirus vaccination but outweighed by benefits. Evid Based Med, 2014, 19(5): 191–192. DOI: 10.1136/eb-2014-101793
[14] McDonald SM, Patton JT. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol, 2011, 19(3): 136–144. DOI: 10.1016/j.tim.2010.12.002
[15] Bass DM. Interferon ga mma and interleukin 1, but not interferon alfa, inhibit rotavirus entry into human intestinal cell lines. Gastroenterology, 1997, 113(1): 81–89. DOI: 10.1016/S0016-5085(97)70083-0
[16] Ludert JE, Ruiz MC, Hidalgo C, et al. Antibodies to rotavirus outer capsid glycoprotein VP7 neutralize infectivity by inhibiting virion decapsidation. J Virol, 2002, 76(13): 6643–6651. DOI: 10.1128/JVI.76.13.6643-6651.2002
[17] Corthésy B, Benureau Y, Perrier C, et al. Rotavirus anti-VP6 secretory immunoglobulin A contributes to protection via intracellular neutralization but not via immune exclusion. J Virol, 2006, 80(21): 10692–10699. DOI: 10.1128/JVI.00927-06
[18] Parashar UD, Hummelman EG, Bresee JS, et al. Global illness and deaths caused by rotavirus disease in children. Emerg Infect Dis, 2003, 9(5): 565–572. DOI: 10.3201/eid0905.020562
[19] Chiba S, Urasawa T, Yokoyama T, et al. Protective effect of naturally acquired homotypic and heterotypic rotavirus antibodies. Lancet, 1986, 328(8504): 417–421. DOI: 10.1016/S0140-6736(86)92133-1
[20] Johansen K, Svensson L. Neutralization of rotavirus and recognition of immunologically important epitopes on VP4 and VP7 by human IgA. Arch Virol, 1997, 142(7): 1491–1498. DOI: 10.1007/s007050050175
[21] Patel M, Glass RI, Jiang BM, et al. A systematic review of anti-rotavirus serum IgA antibody titer as a potential correlate of rotavirus vaccine efficacy. J Infect Dis, 2013, 208(2): 284–294. DOI: 10.1093/infdis/jit166
[22] Conner ME, Zarley CD, Hu B, et al. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis, 1996, 174(Suppl 1): S88–S92.
[23] Wen XB, Cao DJ, Jones RW, et al. Construction and characterization of human rotavirus recombinant VP8* subunit parenteral vaccine candidates. Vaccine, 2012, 30(43): 6121–6126. DOI: 10.1016/j.vaccine.2012.07.078
[24] El-Senousy WM, Shahein YE, Barakat AB, et al. Molecular cloning and immunogenicity evaluation of rotavirus structural proteins as candidate vaccine. Int J Biol Macromol, 2013, 59: 67–71. DOI: 10.1016/j.ijbiomac.2013.04.003
[25] Khodabandehloo M, Shahrabadi MS, Keyvani H, et al. Recombinant outer capsid glycoprotein (VP7) of rotavirus expressed in insect cells induces neutralizing antibodies in rabbits. Iran J Public Health, 2012, 41(5): 73–84.
[26] Ray P, Malik J, Singh RK, et al. Rotavirus nonstructural protein NSP4 induces heterotypic antibody responses during natural infection in children. J Infect Dis, 2003, 187(11): 1786–1793. DOI: 10.1086/jid.2003.187.issue-11
[27] Ijaz MK, Nur-E-Kamal MSA, Dar FK, et al. Inhibition of rotavirus infection in vitro and in vivo by a synthetic peptide from VP4. Vaccine, 1998, 16(9/10): 916–920.
[28] Chen SC, Jones DH, Fynan EF, et al. Protective immunity induced by oral immunization with a rotavirus DNA vaccine encapsulated in microparticles. J Virol, 1998, 72(7): 5757–5761.
[29] O'Neal CM, Crawford SE, Estes MK, et al. Rotavirus virus-like particles administered mucosally induce protective immunity. J Virol, 1997, 71(11): 8707–8717.
[30] Coste A, Sirard JC, Johansen K, et al. Nasal immunization of mice with virus-like particles protects offspring against rotavirus diarrhea. J Virol, 2000, 74(19): 8966–8971. DOI: 10.1128/JVI.74.19.8966-8971.2000
[31] Yuan LJ, Geyer A, Hodgins DC, et al. Intranasal administration of 2/6-rotavirus-like particles with mutant Escherichia coli heat-labile toxin (LT-R192G) induces antibody-secreting cell responses but not protective immunity in gnotobiotic pigs. J Virol, 2000, 74(19): 8843–8853. DOI: 10.1128/JVI.74.19.8843-8853.2000
[32] Siadat-Pajouh M, Cai L. Protective efficacy of rotavirus 2/6-virus-like particles combined with CT-E29H, a detoxified cholera toxin adjuvant. Viral Immunol, 2001, 14(1): 31–47. DOI: 10.1089/08828240151061365
[33] Bertolotti-Ciarlet A, Ciarlet M, Crawford SE, et al. Immunogenicity and protective efficacy of rotavirus 2/6-virus-like particles produced by a dual baculovirus expression vector and administered intramuscularly, intranasally, or orally to mice. Vaccine, 2003, 21(25/26): 3885–3900.
[34] Shuttleworth G, Eckery DC, Awram P. Oral and intraperitoneal immunization with rotavirus 2/6 virus-like particles stimulates a systemic and mucosal immune response in mice. Arch Virol, 2005, 150(2): 341–349. DOI: 10.1007/s00705-004-0447-z
[35] Agnello D, Hervé CA, Lavaux A, et al. Intrarectal immunization with rotavirus 2/6 virus-like particles induces an antirotavirus immune response localized in the intestinal mucosa and protects against rotavirus infection in mice. J Virol, 2006, 80(8): 3823–3832. DOI: 10.1128/JVI.80.8.3823-3832.2006
[36] McNeal MM, VanCott JL, Choi AHC, et al. CD4 T cells are the only lymphocytes needed to protect mice against rotavirus shedding after intranasal immunization with a chimeric VP6 protein and the adjuvant LT (R192G). J Virol, 2002, 76(2): 560–568. DOI: 10.1128/JVI.76.2.560-568.2002
[37] Choi AH, McNeal MM, Flint JA, et al. The level of protection against rotavirus shedding in mice following immunization with a chimeric VP6 protein is dependent on the route and the coadministered adjuvant. Vaccine, 2002, 20(13/14): 1733–1740.
[38] Ciarlet M, Crawford SE, Barone C, et al. Subunit rotavirus vaccine administered parenterally to rabbits induces active protective immunity. J Virol, 1998, 72(11): 9233–9246.
[39] Ball JM, Tian P, Zeng CQY, et al. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science, 1996, 272(5258): 101–104. DOI: 10.1126/science.272.5258.101
[40] Green KY, Sears JF, Taniguchi K, et al. Prediction of human rotavirus serotype by nucleotide sequence analysis of the VP7 protein gene. J Virol, 1988, 62(5): 1819–1823.
[41] Aoki ST, Settembre EC, Trask SD, et al. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 2009, 324(5933): 1444–1447. DOI: 10.1126/science.1170481
[42] Yuan LY, Liu Y, Li CH, et al. Expression in Escherichia coli and immunogenicity of rotavirus VP7. Chin J Biotech, 2001, 17(2): 145–149. (in Chinese).
袁力勇, 刘勇, 李春宏, 等. 轮状病毒VP7基因在大肠杆菌中的表达及其免疫原性. 生物工程学报, 2001, 17(2): 145-149.
[43] Liu N, Xu ZQ, Li DD, et al. Update on the disease burden and circulating strains of rotavirus in China: a systematic review and meta-analysis. Vaccine, 2014, 32(35): 4369–4375. DOI: 10.1016/j.vaccine.2014.06.018
[44] Ward RL, Knowlton DR, Greenberg HB, et al. Serum-neutralizing antibody to VP4 and VP7 proteins in infants following vaccination with WC3 bovine rotavirus. J Virol, 1990, 64(6): 2687–2691.
[45] Choi AHC, Basu M, McNeal MM, et al. Antibody-independent protection against rotavirus infection of mice stimulated by intranasal immunization with chimeric VP4 or VP6 protein. J Virol, 1999, 73(9): 7574–7581.
[46] Lopez S, Arias CF. Early steps in rotavirus cell entry//Roy P, Ed. Reoviruses: Entry, Assembly and Morphogenesis. Berlin Heidelberg: Springer, 2006, 309: 39-66.
[47] Blanchard H, Yu X, Coulson BS, et al. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*). J Mol Biol, 2007, 367(4): 1215–1226. DOI: 10.1016/j.jmb.2007.01.028
[48] Dunn SJ, Fiore L, Werner RL, et al. Immunogenicity, antigenicity, and protection efficacy of baculovirus expressed VP4 trypsin cleavage products, VP5(1)* and VP8* from rhesus rotavirus. Arch Virol, 1995, 140(11): 1969–1978. DOI: 10.1007/BF01322686
[49] Arias CF, Lizano M, López S. Synthesis in Escherichia coli and immunological characterization of a polypeptide containing the cleavage sites associated with trypsin enhancement of rotavirus SA11 infectivity. J Gen Virol, 1987, 68(3): 633–642. DOI: 10.1099/0022-1317-68-3-633
[50] Lizano M, López S, Arias CF. The amino-terminal half of rotavirus SA114fM VP4 protein contains a hemagglutination domain and primes for neutralizing antibodies to the virus. J Virol, 1991, 65(3): 1383–1391.
[51] Mackow ER, Barnett JW, Chan H, et al. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J Virol, 1989, 63(4): 1661–1668.
[52] Matsui SM, Offit PA, Vo PT, et al. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to the heterotypic neutralization domain of VP7 and the VP8 fragment of VP4. J Clin Microbiol, 1989, 27(4): 780–782.
[53] Padilla-Noriega L, Fiore L, Rennels MB, et al. Humoral immune responses to VP4 and its cleavage products VP5* and VP8* in infants vaccinated with rhesus rotavirus. J Clin Microbiol, 1992, 30(6): 1392–1397.
[54] Lee J, Babiuk LA, Harland R, et al. Immunological response to recombinant VP8* subunit protein of bovine rotavirus in pregnant cattle. J Gen Virol, 1995, 76(Pt 10): 2477–2483.
[55] Kovacs-Nolan J, Sasaki E, Yoo D, et al. Cloning and expression of human rotavirus spike protein, VP8*, in Escherichia coli. Biochem Biophys Res Commun, 2001, 282(5): 1183–1188. DOI: 10.1006/bbrc.2001.4717
[56] Kraschnefski MJ, Scott SA, Holloway G, et al. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005, 61(Pt 11)): 989–993.
[57] Xue MG, Yu LQ, Che YJ, et al. Characterization and protective efficacy in an animal model of a novel truncated rotavirus VP8 subunit parenteral vaccine candidate. Vaccine, 2015, 33(22): 2606–2613. DOI: 10.1016/j.vaccine.2015.03.068
[58] Ijaz MK, Attah-Poku SK, Redmond MJ, et al. Heterotypic passive protection induced by synthetic peptides corresponding to VP7 and VP4 of bovine rotavirus. J Virol, 1991, 65(6): 3106–3113.
[59] Xue MG, Yu LQ, Jia LZ, et al. Immunogenicity and protective efficacy of rotavirus VP8* fused to cholera toxin B subunit in a mouse model. Hum Vaccines Immunother, 2016, 12(11): 2959–2968. DOI: 10.1080/21645515.2016.1204501
[60] Qiao XY, Li GW, Wang XQ, et al. Recombinant porcine rotavirus VP4 and VP4-LTB expressed in Lactobacillus casei induced mucosal and systemic antibody responses in mice. BMC Microbiol, 2009, 9(1): 249. DOI: 10.1186/1471-2180-9-249
[61] Bellido D, Craig PO, Mozgovoj MV, et al. Brucella spp. lumazine synthase as a bovine rotavirus antigen delivery system.. Vaccine, 2009, 27(1): 136–145. DOI: 10.1016/j.vaccine.2008.10.018
[62] Tan M, Huang PW, Xia M, et al. Norovirus P particle, a novel platform for vaccine development and antibody production. J Virol, 2011, 85(2): 753–764. DOI: 10.1128/JVI.01835-10
[63] Wen XB, Wei XM, Ran XH, et al. Immunogenicity of porcine P[6], P[7]-specific △VP8* rotavirus subunit vaccines with a tetanus toxoid universal T cell epitope. Vaccine, 2015, 33(36): 4533–4539. DOI: 10.1016/j.vaccine.2015.07.011
[64] Wen XB, Wen K, Cao DJ, et al. Inclusion of a universal tetanus toxoid CD4+ T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ΔVP8* subunit parenteral vaccines. Vaccine, 2014, 32(35): 4420–4427. DOI: 10.1016/j.vaccine.2014.06.060
[65] Pérez Filgueira DM, Mozgovoj M, Wigdorovitz A, et al. Passive protection to bovine rotavirus (BRV) infection induced by a BRV VP8* produced in plants using a TMV-based vector. Arch Virol, 2004, 149(12): 2337–2348. DOI: 10.1007/s00705-004-0379-7
[66] Lentz EM, Mozgovoj MV, Bellido D, et al. VP8* antigen produced in tobacco transplastomic plants confers protection against bovine rotavirus infection in a suckling mouse model. J Biotechnol, 2011, 156(2): 100–107. DOI: 10.1016/j.jbiotec.2011.08.023
[67] Federico Alfano E, Lentz EM, Bellido D, et al. Expression of the multimeric and highly immunogenic Brucella spp. lumazine synthase fused to bovine rotavirus vp8d as a scaffold for antigen production in tobacco chloroplasts. Front Plant Sci, 2015, 6: 1170.
[68] Marelli B, Perez AR, Banchio C, et al. Oral immunization with live Lactococcus lactis expressing rotavirus VP8* subunit induces specific immune response in mice. J Virol Methods, 2011, 175(1): 28–37. DOI: 10.1016/j.jviromet.2011.04.011
[69] Rodríguez-Díaz J, Montava R, Viana R, et al. Oral immunization of mice with Lactococcus lactis expressing the rotavirus VP8* protein. Biotechnol Lett, 2011, 33(6): 1169–1175. DOI: 10.1007/s10529-011-0551-6
[70] Mackow ER, Vo PT, Broome R, et al. Immunization with baculovirus-expressed VP4 protein passively protects against simian and murine rotavirus challenge. J Virol, 1990, 64(4): 1698–1703.
[71] Wen XB, Cao DJ, Jones RW, et al. Tandem truncated rotavirus VP8* subunit protein with T cell epitope as non-replicating parenteral vaccine is highly immunogenic. Hum Vaccin Immunother, 2015, 11(10): 2483–2489. DOI: 10.1080/21645515.2015.1054583
[72] Lua LHL, Fan YY, Chang C, et al. Synthetic biology design to display an 18 kDa rotavirus large antigen on a modular virus-like particle. Vaccine, 2015, 33(44): 5937–5944. DOI: 10.1016/j.vaccine.2015.09.017
[73] Coste A, Cohen J, Reinhardt M, et al. Nasal immunisation with Salmonella typhimurium producing rotavirus VP2 and VP6 antigens stimulates specific antibody response in serum and milk but fails to protect offspring. Vaccine, 2001, 19(30): 4167–4174. DOI: 10.1016/S0264-410X(01)00164-5