生物工程学报  2017, Vol. 33 Issue (12): 1979-1988
http://dx.doi.org/10.13345/j.cjb.170422
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

包玎, 李伟, 石乐明, 李全贞
Bao Ding, Li Wei, Shi Leming, Li Quanzhen
NMDAR1蛋白膜外抗原结构域的重组表达、纯化和免疫反应原性鉴定
Expression, purification and immunoreactivity characterization of extracellular antigenic domains of NMDAR1 protein
生物工程学报, 2017, 33(12): 1979-1988
Chinese Journal of Biotechnology, 2017, 33(12): 1979-1988
10.13345/j.cjb.170422

文章历史

Received: October 26, 2017
Accepted: November 27, 2017
NMDAR1蛋白膜外抗原结构域的重组表达、纯化和免疫反应原性鉴定
包玎1, 李伟1, 石乐明2, 李全贞1     
1 温州医科大学 检验医学院与生命科学学院,浙江 温州 325035;
2 复旦大学 生命科学学院,上海 200433
收稿日期:2017-10-26; 接收日期:2017-11-27; 网络出版时间:2017-11-30
基金项目:国家自然科学基金(Nos. 81671621, 81270852)资助
摘要:构建编码NMDAR1蛋白膜外片段的原核表达重组质粒,在大肠杆菌中诱导表达、纯化并鉴定其免疫反应原性。根据人NMDAR1基因序列,利用Phyre 2软件预测蛋白的三级结构并分析其结构域。设计引物用RT-PCR方法扩增编码NMDAR1膜外蛋白不同结构域的核酸片段,并插入原核表达载体pCold-SUMO构建重组质粒。转化DH5α感受态细胞,菌落PCR鉴定,阳性单克隆进行测序验证。鉴定正确的重组体转化大肠杆菌BL21(DE3),IPTG诱导目的蛋白的表达和纯化,Ni-NTA柱亲和层析和凝胶过滤层析纯化蛋白,酶切切除融合蛋白6His-SUMO标签,用AKTA Purifier进行凝胶过滤层析,收集纯化蛋白。利用SDS-PAGE鉴定蛋白纯度,并用Western blotting进行免疫反应性鉴定。克隆获得NMDAR1膜外部分的三段DNA序列,分别是NR1-M1 (编码19–393 aa)、NR1-S1 (编码394–544 aa)和NR1-S2 (编码663–800 aa)。其中NR1-S1和NR1-S2片段之间以G (甘氨酸)和T (苏氨酸)作为接头连接成为复合片段。经菌落PCR筛选和测序鉴定,成功构建了重组质粒pCold-SUMO-M1和pCold-SUMO-S1-GT-S2。SDS-PAGE鉴定结果表明重组质粒在大肠杆菌中经诱导可表达可溶性NR1-M1及NR1-S1-GT-S2蛋白。对表达产物进行亲和层析和凝胶过滤层析获得了高纯度的目标蛋白。Western blotting证实纯化的目的蛋白能与相应抗体发生特异性结合反应。本研究成功构建了NMDAR1蛋白膜外抗原结构域的原核表达系统,并获得了具有免疫反应性的NR1-M1及NR1-S1-GT-S2纯化蛋白。该蛋白有望用于NMDAR1蛋白的功能研究及自身抗体的检测。
关键词NMDAR1     膜外蛋白     原核表达     纯化    
Expression, purification and immunoreactivity characterization of extracellular antigenic domains of NMDAR1 protein
Ding Bao1, Wei Li1, Leming Shi2, Quanzhen Li1     
1 School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China;
2 School of Life Sciences, Fudan University, Shanghai 200433, China
Abstract: This study aimed to construct prokaryotic recombinant plasmids for expression of the extracellular domains of NMDAR1 protein, purify and characterize the immunoreactivity of the recombinant proteins. Based on the mRNA sequence of human NMDAR1 gene, we predicted the structure of the antigenic domains in the extracellular part of the protein using the "phyre2" software. Primers were designed to amplify the nucleic acid fragments encoding the NMDAR1 extracellular antigenic domains by RT-PCR. The amplified gene fragments were cloned into pCold-SUMO vector to construct the recombinant plasmids which were transformed into Escherichia coli DH5α. The positive colonies harboring the recombinant plasmids were picked and verified by PCR and DNA sequencing. Then, the recombinant plasmids were transformed into E. coli BL21(DE3) strain and induced by IPTG for protein expression. The recombinant proteins were purified by Ni-NTA affinity chromatography. The target proteins were further purified by removing the 6 His-SUMO tag using enzyme excision followed by gel filtration chromatography using AKTA purifier. The purity of the recombinant proteins were evaluated by SDS-PAGE and the immunoreactivity were characterized by Western blotting. Three DNA fragments encoding the extracellular domains of NMDAR1 protein, including NR1-M1 (encoding 19–393 aa), NR1-S1 (encoding 394–544 aa) and NR1-S2 (encoding 663–800 aa), were amplified by RT-PCR. The NR1-S1 and NR1-S2 were linked with G (arginine) and T (threonine) amino acid as a combined fragment. The NR1-M1 and NR1-S1-GT-S2 fragments were cloned into pCold-SUMO vector and two recombinant plasmids, pCold-SUMO-M1 and pCold-SUMO-S1-GT-S2, were generated and expressed in E. coli. SDS-PAGE analysis showed that the recombinant plasmids expressed soluble NR1-M1 and NR1-S1-GT-S2 proteins in bacterial. After affinity chromatography and gel filtration chromatography, we obtained high purity target proteins. Western blotting assay showed that the recombinant proteins NR1-M1 and NR1-S1-GT-S2 can bind specially with their corresponding antibodies, suggesting the recombinant proteins retained antigenic reactivity. We constructed a prokaryotic expression system for expressing the NMDAR1 protein extracellular parts that had immunoreactivity successfully, and the purified proteins can be used for studying NMDAR1 function and testing the autoantibodies.
Key words: NMDAR1     extracellular protein     prokaryotic expression     purification    

N-甲基-D-天冬氨酸受体1 (NMDAR1)是谷氨酸受体NMDAR的1型亚基。NMDAR由不同的亚基构成异四聚体,亚基组成主要包括NR1 (NDMAR1)、NR2和NR3。NMDAR1是NMDAR受体必不可少的组成亚基,可结合甘氨酸,为该受体的功能单位[1-4]

人NMDAR1基因定位于染色体的9q34.3,由938个氨基酸组成,分子量为105.5 kDa,总长度为4 213 bp,开放阅读框为2 814 bp。1991年Moriyoshi用蟾蜍卵母细胞表达系统结合电生理学的方法首次成功克隆出大鼠NMDAR1基因[5],人与大鼠NMDAR1的氨基酸序列具有99%的同源性。NMDAR1细胞外区域有两个突出部分,N末端位于细胞外,C末端位于细胞内,中间有3个跨膜片段(Transmenbrane segments, TM),细胞外区域包括N末端和激动剂结合区[6]。NMADR1主要包括3个结构域,分别为氨基末端结构域(Animoacid terminal domain, ATD)、激动剂结合结构域(Ligand binding domain, LBD)和跨膜结构域(Transmembrane domain, TMD)[3]

NMDAR是一种兴奋性神经突触受体,是谷氨酸受体的重要亚型,主要存在于哺乳动物神经细胞。它不仅参与正常生理过程如神经元的增殖、迁移和塑造,并在许多神经系统疾病,如中风、癫痫和神经性退变等过程中发挥重要作用[7-13]。抗NMDAR抗体首先发现于脑炎伴卵巢畸胎瘤年轻女性患者的血清和脑脊液中,随后在无潜在肿瘤的脑炎患者中亦证实该抗体的存在[14-20]。进一步研究发现,NMDAR也参与一些免疫性疾病,如神经精神性系统性红斑狼疮(NPSLE)。NPSLE是SLE疾病中最难诊断和高风险的疾病亚型。其最显著的检测指标是患者血清或脑脊液中存在抗NR2或NR1的自身抗体[21-28]。另外,抗NMDAR脑炎作为一种新型脑炎亚类受到广泛关注,是一种NMDAR抗体相关自身免疫性脑炎。鉴于NMDAR1自身抗体与包括神经精神性狼疮在内的多种疾病症状密切相关,因此检测病人血和脑脊液中的NMDAR1蛋白和抗体对疾病的诊断和鉴别诊断具有重要意义。然而目前市场上尚无具有明确免疫反应性的NMDAR1重组蛋白可用于疾病标志物的研究,因此,体外表达NMDAR重组蛋白并对其免疫反应性进行鉴定,对研究该蛋白在相关疾病发病机制中的作用及进行疾病的早期诊断和鉴别诊断,具有重要的应用价值。NMDAR1作为NMDAR组成的必要亚基,膜外部分包含了蛋白主要抗原结构域。对NMDAR1蛋白的膜外部分进行表达和纯化,有助于研究该蛋白膜外结构域的功能和免疫反应性,同时探索其用于自身免疫病患者体内NMDAR1自身抗体检测的可行性。

1 材料与方法 1.1 试剂与材料

大肠杆菌DH5α、BL21(DE3)感受态细胞、胶回收试剂盒及质粒提取试剂盒均购自天根生化科技有限公司;pCold-SUMO质粒为温州医科大学李伟课题组惠赠;限制性核酸内切酶购自NEB;无缝克隆酶购自诺唯赞生物有限公司;异丙基硫代半乳糖苷(IPTG)购自上海生物化工有限公司;ULP蛋白酶来源于复旦大学麻锦彪课题组;SDS-PAGE凝胶配制试剂盒购自碧云天生物公司;抗体购自Abcam和CST公司;引物合成委托生工生物工程(上海)股份有限公司完成。

1.2 序列的选择

将人和鼠的NR1蛋白序列比对,发现具有99%的相似性,说明NR1蛋白序列高度保守。根据文献[3]报道的鼠NMDAR1三级预测结构(PDB 4pe5),利用phyre2软件预测人NMDAR1蛋白结构。根据预测蛋白结构域对应的氨基酸序列,选取对应膜外片段。N-末端的“19–393 aa”序列属于氨基末端结构域,“394–544 aa”和“663–800 aa”氨基酸序列属于配体结合结构域(图 1)。NR1-M1 (编码19–393 aa)、NR1-S1 (编码394–544 aa)和NR1-S2 (编码663–800 aa)为选取的3个膜外截短蛋白片段。其中NR1-S1和NR1-S2片段之间以G (甘氨酸) T (苏氨酸)作为接头连接成为复合片段NR1-S1-GT-S2。

图 1 人NR1的三级预测结构及结构域对应膜外氨基酸序列模式图 Figure 1 The tertiary structure of human NR1 and the amino acid sequences corresponding to the domain. The N-terminal "19–393 aa" sequences belong to amino-terminal domain; The N-terminal "394–544 aa" and "663–800 aa" sequences belong to ligand binding domain.
1.3 设计引物并合成

设计可扩增NR1-M1基因片段的PCR上下游引物,并分别在引物的前端加上pCold-SUMOb载体的同源序列(M1-F和M1-R见表 1)。设计NR1-S1基因片段的上游引物和NR1-S2基因片段的下游引物,并分别在引物的前端加上pCold-SUMOb载体的同源序列(分别为S1-F和S2-R,见表 1)。设计NR1-S1基因片段的下游引物和NR1-S2基因片段的下游引物,并在两个引物之间引入编码GT氨基酸对应核苷酸序列和S1S2的同源序列,以便用于Overlap-PCR将S1和S2两个基因片段连接成复合片段(分别为S1-R和S2-F,见表 1)。引物设计完成并送生物公司进行合成。

表 1 引物序列 Table 1 The sequences of primers
Primer name Primer sequences (5′–3′)
M1-F CGAACAGATTGGAGGTCGTGCCGCGTGCGACC
M1-R TCGAGGGTACCGAGCTCTTACTGGTACCCTCGAGGCTTCTCTGTC
S1-F CGAACAGATTGGAGGTATGTCCACCAGACTGAAGATTGTGATGTCCACCAGACTGAAGATTGTG
S1-R ATGCGGGTGCCCTTCTTGACCAGA ATAGTCAGG
S2-F GTCAAGAAGGGCACCCGCATCACGGGCATCAACGA
S2-R TCGAGGGTACCGAGCTCTTACGAGTCACATTCCTGATACCGAAC
Note: the sequences marked by italic are the homologous sequences of pCold-SUMOb vector.
1.4 目的基因扩增及重组表达载体的构建

RT-PCR扩增获得NR1-M1核酸片段。Overlap-PCR方法扩增获得NR1-S1-GT-S2复合片段,过程示意图见图 2。用Nde Ⅰ限制性内切酶切割pCold-SUMO载体成线性化载体。运用无缝克隆技术分别将M1及S1-GT-S2核酸片段与pCold-SUMOb线性化载体进行重组,重组体分别命名为pCold-SUMOb-M1及pCold-SUMOb-S1-GT-S2。重组质粒转化DH5α感受态细胞,菌落PCR鉴定,阳性单克隆进行测序验证。

图 2 Over-lap PCR扩增S1-GT-S2核酸片段原理过程示意图 Figure 2 The schematic diagram of the over-lap PCR amplification of S1-GT-S2 fragment.
1.5 蛋白的诱导表达

构建成功的pCold-SUMOb-M1及pCold-SUMOb-S1-GT-S2重组质粒转化BL21(DE3)细胞,涂LB平板,37 ℃培养箱培养过夜,菌落PCR鉴定,鉴定成功的单菌落转接至10 mL的LB培养基,37 ℃、250 r/min摇床培养,至培养基浑浊,转接至1 L的LB培养基。首先,在37 ℃、220 r/min条件下培养,待细菌生长至对数生长期(A600=0.6–0.8)时,加入终浓度为0.2 mmol/ L的IPTG,18 ℃继续培养15–18 h,4 ℃离心收集细菌。按照体积比,菌液沉淀和buffer1 (20 mmol/L Tris-HCl, pH 8.0, 500 mmol/L NaCl, 25 mmol/L咪唑) 1:5–1:7重悬混匀,利用高压破菌机4 ℃进行破菌。裂解菌液17 000 r/min离心1 h,收集上清进行下一步蛋白的纯化。

1.6 蛋白的纯化

菌液上清过Ni-NTA柱,融合蛋白结合于镍柱上,之后将镍柱接入到AKTA purifier系统装置上,进行洗脱和收集。ULP1蛋白酶加入收集的洗脱液中,并在透析液(透析液成分20 mmol/L Tris-HCl,pH 8.0, 500 mmol/L NaCl)中透析4 h。酶切过后的收集液过Ni-NTA柱,融合标签结合于镍柱上,收集流穿液体。收集的流穿液体运用凝胶过滤层析进一步纯化,AKTA purifier进行洗脱和收集。最后用超滤管将收集的纯化蛋白进行浓缩。

1.7 Western blotting进行重组蛋白免疫反应原性鉴定

Western blotting实验检测纯化蛋白的免疫反应性。首先用SDS-PAGE分离纯化蛋白,湿转至PVDF膜上,经封闭液(5% BSA, 0.1% TBST)封闭1 h,加入对应的小鼠抗人NMDAR1抗体(抗人NR1-M1抗体,Ab134308,美国Abcam公司)和兔抗人NMDAR1多肽(GluN1)抗体(GluN1 Rabbit mAb,CST 5704S,美国Cell Signaling公司) 4 ℃孵育过夜。阴性对照分别采用无关抗体(小鼠IgG和兔IgG)。TBST洗涤3次,10 min/次,加入对应二抗孵育1 h,TBST洗涤3次,ECL化学发光显影。

2 结果 2.1 目的基因扩增及重组体的鉴定

RT-PCR扩增目的核酸片段,琼脂糖凝胶电泳鉴定显示在对应大小的位置有目的条带存在,NR1-M1核酸片段大小为1 125 bp (图 3,泳道1),NR1-S1-GT-S2核酸片段大小为873 bp (图 3,泳道2)。胶回收NR1-M1和NR1-S1-GT-S2核酸片段,和pCold-SUMOb载体重组获得重组体。重组质粒转化DH5α细胞,挑取单克隆菌落进行菌落PCR (载体通用引物)鉴定,琼脂糖凝胶电泳结果显示载体有对应大小的核酸片段插入,pCold-SUMOb-M1大小为1 500 bp左右(图 4,泳道1–6),pCold-SUMOb-S1-GT-S2大小为1 200 bp左右(图 4,泳道8–13)。阳性单克隆菌落进行Sanger测序,测序结果进行Blast比对发现序列完全正确,重组体构建成功。

图 3 M1和S1-GT-S2的PCR扩增琼脂糖凝胶电泳图 Figure 3 Agarose gel electrophoresis of the amplified M1 and S1-GT-S2 by PCR. M: DL2000 DNA marker; 1: M1 (1 125 bp); 2: S1-GT-S2 (873 bp).
图 4 菌落PCR鉴定重组质粒pCold-SUMOb-M1及pCold-SUMOb-S1-GT-S2 Figure 4 Identification of recombinant plasmids pCold-SUMOb-M1 and pCold-SUMOb-S1-GT-S2 by colony PCR. M: DL5000 DNA marker; 1–6: the monoclonal colonies of pCold-SUMOb-M1; 7: pCold-SUMOb vector; 8–13: the monoclonal colonies of pCold-SUMOb-S1-GT-S2.
2.2 蛋白的诱导表达和纯化

重组质粒pCold-SUMO-M1和pCold-SUMO-S1-GT-S2转化BL21感受态细胞,IPTG诱导目的蛋白表达。收集菌液经高压破菌之后,SDS-PAGE显示在相应分子量位置有明显的重组蛋白表达条带(图 5,泳道1和图 6,泳道1),而含载体的对照菌株则无蛋白表达条带(图 5,泳道2和图 6,泳道2)。对破菌后的沉淀和上清进行蛋白电泳分析,发现重组蛋白虽然在沉淀部分有少量表达,但主要存在于上清部分(图 5,泳道3、4和图 6,泳道3、4),说明重组蛋白主要以可溶性蛋白的形式表达。蛋白经Ni-NTA柱亲和层析纯化,由AKTA purifier洗脱,得到了纯度较高的融合蛋白6 His-SUMO-NR1-M1 (分子量约57 kDa) (图 5,泳道7、8)和6 His-SUMO-NR1-S1-GT-S2 (分子量约47 kDa) (图 6,泳道7、8)。纯化的融合蛋白经ULP1蛋白酶切割,去除标签6 His-SUMO融合标签。去除标签的目的蛋白通过凝胶过滤层析进行进一步纯化,得到高纯度的目的蛋白NR1-M1 (分子量约42 kDa) (图 5,泳道9、10)和NR1-S1-GT-S2 (分子量约32 kDa) (图 6,泳道9、10)。

图 5 SDS-PAGE鉴定NR1-M1蛋白表达及纯化结果 Figure 5 Identification of the expression and purification of NR1-M1 protein by SDS-PAGE. 1: the whole bacterial of BL21 cells transformed by pCold-SUMO-M1; 2: the whole bacterial of BL21 cells transformed by pCold-SUMO vector; 3: the precipitation of induced bacteria after lysis; 4: the supernatant of induced bacteria after lysis; 5: the eluate from Ni-NTA purification of supernatant; M: protein marker; 7–8: purified protein; 9–10: purified protein (no SUMO tag).
图 6 SDS-PAGE鉴定S1-GT-S2蛋白表达及纯化结果 Figure 6 Identification of the expression and purification of S1-GT-S2 protein by SDS-PAGE. 1: the whole BL21 bacterial transformed by pCold-SUMO-S1-GT-S2; 2: the whole bacterial of BL21 cells transformed by pCold-SUMO vector; 3: the precipitation of induced bacteria after lysis; 4:the supernatant of induced bacteria after lysis; 5: the eluate after Ni-NTA purification of supernatant; M: Protein marker; 7–8: purified protein; 9–10: purified protein (no SUMO tag).
2.3 纯化目的蛋白的Western blotting鉴定

取NR1-M1纯化蛋白,NR1-S1-GT-S2纯化蛋白,空载体pCold-SUMO转化DH5α并经IPTG诱导的菌液进行Western blotting鉴定。结果显示重组蛋白NR1-M1 (分子量约42 kDa)和NR1-S1-GT-S2 (分子量约32 kDa)均可以和对应抗体发生特异性免疫反应(图 7,M1-1和S1-GT-S2-1),而空载体对照与相应抗体无反应(图 7,M1-2和S1-GT-S2-2)。另外,重组蛋白NR1-M1和NR1-S1-GT-S2与无关抗体(小鼠IgG和兔IgG)无免疫反应(图 7,M1-3和S1-GT-S2-3)。说明我们表达的重组NR1-M1和NR1-S1-GT-S2为具有免疫反应性的可溶性蛋白。

图 7 纯化蛋白的Western blotting分析 Figure 7 Analysis of the purified protein by Western blotting. M1-1: 0.5 μg NR1-M1 purified protein, incubated with mouse anti-NMDAR1 monoclonal antibody; M1-2: pCold-SUMO vector control, incubated with mouse anti-NMDAR1 monoclonal antibody; M1-3: 0.5 μg NR1-M1 purified protein incubated with mouse IgG; S1-GT-S2-1: 0.5 μg NR1-S1-GT-S2 purified protein, incubated with rabbit anti-NMDAR mAb; S1-GT-S2-2: pCold-SUMO vector control, incubated with rabbit anti-NMDAR mAB; S1-GT-S2-3: 0.5 μg S1-GT-S2 purified protein incubated with rabbit IgG; M: protein marker.
3 讨论

NMDAR受体是由多个亚基紧密结合形成的复合体,主要分布于中枢神经系统中,是神经系统信号传递的重要介质。其中NMDAR1是NMDAR复合体的主要组成成分。NMDAR1是一种膜蛋白,含有多次跨膜结构。其膜外部分可能是自身抗体作用的主要靶标,但目前有关该蛋白膜外结构域抗原决定簇及其免疫反应性尚无可靠的研究证据。因为NMDAR1是一种膜蛋白,其分子量较大,且结构复杂,因此体外表达具有一定难度。目前市场上仅有一种Abcam公司的NMDAR1重组蛋白可用于科研,但该蛋白仅包含NMDAR1蛋白的部分胞内片段(1–122位氨基酸),且免疫反应性较弱,难以满足科研需要,因此急需开发一种含有NMDAR1全长或主要抗原决定簇(尤其是胞外部分)的重组蛋白。本研究首先根据曾经报导的鼠NMDAR1三级结构分析结果,利用Pymol软件对人NMDAR1膜外结构进行分析并预测其抗原结构域。然后用PCR对抗原结构域进行分段扩增并利用原核表达系统快速纯化出NMDAR1的可溶性膜外蛋白片段,是NMDAR1抗原表达的一种新的尝试。

由于NMDAR1蛋白结构复杂且含有多次跨膜结构,因此对该蛋白的表达和纯化有较大的难度。Karakas等利用昆虫表达系统表达鼠源蛋白用于晶体结构的分析[3],但此表达系统成本高、表达周期长且表达量低,难以用于规模生产。虽然利用固相合成技术可以合成NMDAR1多肽片段[24] (20个氨基酸左右),但合成的多肽受到氨基酸长度的限制,不一定包含NMDAR1蛋白中功能性的抗原结构域。以前也有利用原核表达系统获得NMDAR1截短蛋白的报道[29],但所表达的蛋白为不溶性的包涵体。因包涵体内的蛋白质是处于非折叠状态的聚集体,因此其免疫活性较低。本研究根据NMDAR1蛋白结构特征,选择性地表达其膜外结构域中含重要抗原决定簇的蛋白。根据结构预测结果,本研究表达的蛋白片段M1、S1和S2几乎包含了NMDAR1蛋白所有的膜外部分。另外,我们利用pCold-SUMOb表达载体,该表达系统含有CSPA启动子,在低温下可以启动蛋白的表达,使细菌生长缓慢,蛋白合成速度缓慢,从而最大限度地保证了蛋白正确折叠的几率,提高了蛋白可溶性,增强了活性蛋白的几率。该载体的另一个重要特征是同时具有SUMO-tag和His-tag。SUMO-tag可以显著提高小分子蛋白的表达量和可溶性,而His-tag则用于蛋白的镍亲和层析纯化。载体上的“SUMO”蛋白酶切除位点可用于标签的切除,从而保证目的蛋白的纯度。细菌表达产物经Ni-NTA亲和层析、标签切除及凝胶过滤层析,得到了较纯的可溶性蛋白。经Western blotting证实纯化的目的蛋白能与相应抗体发生特异性结合反应。

本研究为制备NMDAR1重组蛋白并进行活性鉴定的初步研究,所获得的NR-M1和NR-S1-GT-S2重组蛋白因包含了NMDAR1蛋白主要的抗原结构域,可望用于自身免疫病患者体内NMDAR1自身抗体的检测。NMDAR自身抗体是神经精神性狼疮(NPSLE)重要的标志性抗体[21-28],另外最近发现在脑炎患者和脑炎伴卵巢畸胎瘤年轻女性患者的血清和脑脊液中也有NMDAR自身抗体存在[14-20]。下一步我们将利用NR-M1和NR-S1-GT-S2重组蛋白检测患者血清和脑脊液中的NMDAR自身抗体,探索该重组蛋白片段在疾病诊断中的应用价值。

参考文献
[1] Ulbrich MH, Isacoff EY. Rules of engagement for NMDA receptor subunits. Proc Natl Acad Sci USA, 2008, 105(37): 14163–14168. DOI: 10.1073/pnas.0802075105
[2] Laube B, Kuhse J, Betz H. Evidence for a tetrameric structure of recombinant NMDA receptors. Neuroscience, 1998, 18(8): 2954–2961.
[3] Karakas E, Furukawa H. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science, 2014, 344(6187): 992–997. DOI: 10.1126/science.1251915
[4] Furukawa H, Singh SK, Mancusso R, et al. Subunit arrangement and function in NMDA receptors. Nature, 2005, 438: 185–192. DOI: 10.1038/nature04089
[5] Moriyoshi K, Masu M, Ishii T, et al. Molecular cloning and characterization of the rat NMDA receptor. Nature, 1991, 354(6348): 31–37. DOI: 10.1038/354031a0
[6] Hollmann M, Maron C, Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1. Neuron, 1994, 13(6): 1331–1343. DOI: 10.1016/0896-6273(94)90419-7
[7] Husi H, Ward MA, Choudhary JS, et al. Proteomic analysis of NMDAR-adhesion protein signaling complexes. Nature Neurosci, 2000, 3(7): 661–669. DOI: 10.1038/76615
[8] Coyle JT. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol, 2006, 26(4/6): 363–382.
[9] Waxman EA, Lynch DR. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. Neuroscientist, 2005, 11(1): 37–49. DOI: 10.1177/1073858404269012
[10] Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci, 2007, 8(6): 413–426.
[11] Morris RG, Anderson E, Lynch GS, et al. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 1986, 319(6056): 774–776. DOI: 10.1038/319774a0
[12] Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci, 1990, 13: 71–82.
[13] Mattson MP, LaFerla FM, Chan SL, et al. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2000, 23: 222–229. DOI: 10.1016/S0166-2236(00)01548-4
[14] Dalmau J, Tüzün E, Wu HY, et al. Paraneoplastic anti-N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol, 2007, 61(1): 25–36. DOI: 10.1002/ana.v61:1
[15] Sansing LH, Tǜzǜn E, Ko MW, et al. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol, 2007, 3(5): 291–296. DOI: 10.1038/ncpneuro0493
[16] Iizuka T, Sakai F. Anti-nMDA receptor encephalitis--clinical manifestations and pathophysiology. Brain Nerve, 2008, 60(9): 1047–1060.
[17] Dalmau J, Lancaster E, Martinezhernandez E, et al. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol, 2011, 10(1): 63–74. DOI: 10.1016/S1474-4422(10)70253-2
[18] Bayreuther C, Bourg V, Dellamonica J, et al. Complex partial status epilepticus revealing anti-NM DA receptor encephalitis. Epileptic Disord, 2009, 11(3): 261–265.
[19] Florance NR, Davis RL, Lam C, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol, 2009, 66(1): 11–18. DOI: 10.1002/ana.v66:1
[20] Hughes EG, Peng X, Gleichman AJ, et al. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J Neurosci, 2010, 30(17): 5866–5875. DOI: 10.1523/JNEUROSCI.0167-10.2010
[21] Gono T, Kawaguchi Y, Kaneko H, et al. Anti-NR2A antibody as a predictor for neuropsychiatric systemic lupus erythematosus. Rheumatology, 2011, 50(9): 1578–1585. DOI: 10.1093/rheumatology/keq408
[22] de Giorgio LA, Konstantinov KN, Lee SC, et al. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat Med, 2001, 7(11): 1189–1193. DOI: 10.1038/nm1101-1189
[23] Arinuma Y, Yanagida T, Hirohata S. Association of cerebrospinal fluid anti-NR2 glutamate receptor antibodies with diffuse neuropsychiatric systemic lupus erythematosus. Arthritis Rheum, 2008, 58(4): 1130–1135. DOI: 10.1002/art.23399
[24] Ogawa E, Nagai T, Sakuma Y, et al. Association of antibodies to the NR1 subunit of N-methyl-D-aspartate receptors with neuropsychiatric systemic lupus erythematosus. Mod Rheumatol, 2016, 26(3): 377–383. DOI: 10.3109/14397595.2015.1083163
[25] Husebye ES, Sthoeger ZM, Dayan M, et al. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Anna Rheum Dis, 2005, 64: 1210–1213. DOI: 10.1136/ard.2004.029280
[26] Tay SH, Fairhurst AM, Mak A. Clinical utility of circulating anti-N-methyl-d-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren's syndrome: an updated meta-analysis. Autoimmnity Rev, 2017, 16(2): 114–122. DOI: 10.1016/j.autrev.2016.12.002
[27] Lauvsnes MB, Omdal R. Systemic lupus erythematosus, the brain, and anti-NR2 antibodies. J Neurol, 2012, 259(4): 622–629. DOI: 10.1007/s00415-011-6232-5
[28] Omdal R, Brokstadc K, Waterlood K, et al. Neuropsychiatric disturbances in SLE are associated with antibodies against NMDA receptors. Eur J Neurol, 2005, 12: 392–398. DOI: 10.1111/ene.2005.12.issue-5
[29] Zhang YM, Sun CK, Fan M, et al. High expression, purification and characterization of cDNA encoding M3-M4 loop in the essential subuint of hNMDA. Chin J Biochem Mol Biol, 2003, 19(5): 588–593. (in Chinese).
张玉梅, 孙长凯, 范明, 等. 人NMDA受体主亚基M3-M4环基因片段的高效表达、纯化与鉴定. 中国生物化学与分子生物学报, 2003, 19(5): 588-593.