生物工程学报  2015, Vol. 31 Issue (11): 1623-1631

服务

文章信息

张丽丽, 曹珊珊, 张屹峰, 宣春玲, 吴有强, 胡松华
Lili Zhang, Shanshan Cao, Yifeng Zhang, Chunling Xuan, Youqiang Wu, Songhua Hu
金黄色葡萄球菌凝集因子B的原核表达及其抗血清调理吞噬活性
Prokaryotic expression of Staphylococcus aureus Clumping factor B and evaluation of the antiserum-mediated opsonic activity
生物工程学报, 2015, 31(11): 1623-1631
Chin J Biotech, 2015, 31(11): 1623-1631
10.13345/j.cjb.140632

文章历史

Received: December 23, 2014
Accepted: February 26, 2015
金黄色葡萄球菌凝集因子B的原核表达及其抗血清调理吞噬活性
张丽丽1, 曹珊珊2, 张屹峰2, 宣春玲2, 吴有强2 , 胡松华1     
1. 浙江大学动物科学学院,浙江 杭州 310012;
2. 浙江海隆生物科技有限公司,浙江 绍兴 312000
摘要:金黄色葡萄球菌是导致医院院内感染的主要病原。由于金黄色葡萄球菌极易产生抗药性,因此疫苗免疫是预防该细菌感染的主要手段。作为一个粘附分子,凝集因子B (ClfB) 的作用是使金黄色葡萄球菌能够在宿主黏膜定植,是预防该菌感染的一个重要的靶分子。本研究成功地在大肠杆菌中表达了可溶的ClfB N1-N3结构域蛋白 (Truncated-ClfB),并且利用亲和层析、离子交换层析和凝胶过滤技术对其进行了纯化。用纯化后的Truncated-ClfB免疫新西兰大白兔,收集三免后的血清检测其抗体水平并且利用流式细胞术检测抗血清的调理吞噬活性。检测结果表明,三免后的兔源Truncated-ClfB抗血清抗体效价高达1: 640 000;与免疫前兔源血清相比,兔源Truncated-ClfB抗血清能够显著增加多形核白细胞 (Polymorphonuclear leukocytes, PMN) 对金黄色葡萄球菌的吞噬效率 (P<0.01)。结果表明Truncated-ClfB有希望作为金黄色葡萄球菌疫苗的候选抗原。
关键词蛋白    纯化    多形核白细胞    免疫    流式细胞术    
Prokaryotic expression of Staphylococcus aureus Clumping factor B and evaluation of the antiserum-mediated opsonic activity
Lili Zhang1, Shanshan Cao2, Yifeng Zhang2, Chunling Xuan2, Youqiang Wu2 , Songhua Hu1     
1. College of Animal Science Zhejiang University, Hangzhou 310012, Zhejiang, China;
2. Novo Biotech Corp, Shaoxing 312000, Zhejiang, China
Abstract: Staphylococcus aureus is a major cause of hospital-acquired infection. Because the bacteria are very easy to become resistant to antibiotics, vaccination is a main method against S. aureus infection. Clumping factor B (ClfB) is an adhesion molecule essential for S. aureus to colonize in the host mucosa and is regarded as an important target antigen. In this study, we successfully used Escherichia coli to express a segment encoding the N1-N3 regions of ClfB protein (Truncated-ClfB) cloned from S. aureus. The protein was purified by affinity and ion exchange chromatographies and gel filtration. Rabbits were immunized three times with purified Truncated-ClfB. After that, blood was collected to prepare serum which were then used for measurement of antibody level. Phagocytosis of S. aureus opsonized by the serum was determined by a flow cytometry. Results show that the serum IgG titer reached 1:640 000. Phagocytosed S. aureus by polymorphonuclear leukocytes were significantly more when the bacteria were opsonized by the serum from Truncated-ClfB immunized rabbits than those from no immunized group (P<0.01). Therefore, the results indicated that Truncated-ClfB could be a promising vaccine candidate against S. aureus infection.
Keywords: protein    purification    polymorphonuclear leukocytes    immune    flow cytometry    

金黄色葡萄球菌 Staphylococcus aureus 是导致医院院内感染与后天免疫性群体感染的最主要病原[1]。金黄色葡萄球菌的致病作用广泛,可引起皮肤炎症、中毒性休克、肺炎、骨髓炎、心内膜炎、败血症等一系列疾病 [1, 2, 3, 4]。此外,金黄色葡萄球菌具有持续进化的抗药性机制,能够对多种抗生素产生耐药性与抗药性[5]。因此,疫苗免疫是国际公认的预防金黄色葡萄球菌感染与降低疾病严重程度的最佳方法。

金黄色葡萄球菌是一种体外寄生菌,实现感染的首要步骤是在宿主细胞表面黏附。因此,阻断细菌-宿主细胞间的黏附作用是金黄色葡萄球菌疫苗的重要作用靶点[6]。黏附素 (Microbial surface components recognizing adhesive matrix molecules,MSCRAMMs) 是一类菌体表面蛋白,能够识别黏附基质分子并且介导细菌黏附于宿主细胞[7]。目前,已鉴定了多种金葡菌黏附素,如凝集因子 (Clf A/B)、纤维蛋白结合蛋白 (FnBP A/B)、胶原结合蛋白 (Cna) 以及酪氨酸-丝氨酸富集蛋白 (SdrC/D/E) 等。

凝集因子B (Clumping factor B,ClfB) 是金黄色葡萄球菌的一个MSCRAMM分子,能够结合纤维蛋白原[8],当与血浆混合时能够帮助金黄色葡萄球菌形成典型的葡萄球菌簇,并且促进局部形成血凝块从而逃逸宿主免疫细胞的攻 击[9]。ClfB还能与人内皮细胞表面的Ⅰ型细胞角质素分子K10结合,协助金黄色葡萄球菌黏附于受伤皮肤及内皮结构表面[10]。有研究证明,当ClfB缺失突变时,金黄色葡萄球菌在小鼠鼻腔的定植能力显著低于对照组[11]。由此可见,作为一个重要的MSCRAMM分子,ClfB能够成为金黄色葡萄球菌疫苗的候选抗原。ClfB蛋白含有8个结构域,包括N端信号肽区、N端纤维蛋白原结合结构域 (N1-N3)、丝氨酸-天冬氨酸重复区、跨细胞壁结构域、细胞膜锚定位点和带正电荷的胞质尾结构域 (图1)。其中,N1-N3结构域参与ClfB与基质分子 (如Fg α与CK10) 的结合,在黏附过程中起主要作用[12]

图1 ClfB的结构图 Fig.1 Domain organization of ClfB.

为了从蛋白水平对ClfB进行研究,我们成功地在大肠杆菌中表达了可溶的ClfB N1-N3结构域蛋白 (Truncated-ClfB),并且利用亲和层析、离子交换和凝胶过滤技术对其进行了纯化。调理吞噬实验表明,兔源Truncated-ClfB抗血清能够显著增加PMN对金黄色葡萄球菌的吞噬 效率。

1 材料与方法 1.1 材料

纯种雌性新西兰大白兔 (约2 kg) 购自浙江省实验动物中心。大肠杆菌DH5α和BL21 (DE3)、原核表达载体pET28a、金黄色葡萄球菌由本实验室保存。

限制性内切酶NheⅠ、XhoⅠ和T4 DNA连接酶购自TaKaRa宝生物工程 (大连) 有限公司;DNA回收试剂盒购自天根生物工程有限公司;羊抗兔IgG-HRP购自Earthox公司;TMB显色液购自北京索莱宝公司;FITC购自Sigma公司;兔外周血中性粒细胞分离液购自TBD公司;HBSS、D-HBSS购自Gibco公司。

1.2 Truncated-ClfB蛋白在大肠杆菌中的表达、纯化和鉴定 1.2.1 金黄色葡萄球菌基因组DNA的提取

将金黄色葡萄球菌接种到血平板上,37 ℃孵育10 h。从血平板上挑取有溶血圈的单菌落,接种于5 mL的肉汤培养基中过夜培养。过夜培养的菌体经离心收集后,将沉淀重悬于467 µL的TE缓冲液 (1 mol/L Tris-HCl,0.1 mol/L EDTA,pH 8.0),加入30 µL的10%的SDS和3 µL的20 mg/mL的蛋白酶K,充分混匀,37 ℃孵育3 h。用相同体积 (500 µL) 的酚氯仿异戊醇 (25∶24∶1),12 000×g离心10 min,小心吸取上层液体到新的离心管中,抽提两次,加入 50 µL的异丙醇沉淀DNA,12 000×g离心5 min,弃去异丙醇。用无水乙醇清洗1遍后,用 10 mmol/L Tris-HCl (pH 8.0) 溶解DNA,保存于-20 ℃。

1.2.2 重组表达载体的构建

根据GenBank中金黄色葡萄球菌ClfB N1-N3结构域的核苷酸序列设计特异性引物,上、下游引物5′端分别引入NheⅠ和XhoⅠ酶切位点。引物由上海华大基因合成。引物序列如下:Forward:5′-GCGCTAGCTCAGAACAATCG AACGATACAA-3′ (下划线为NheⅠ酶切位点);Reverse:5′-GCCTCGAGCTAATAACGTACAAC ATTCTCATTA-3′ (下划线为XhoⅠ酶切位点)。PCR反应循环条件为:98 ℃ 预变性30 s;98 ℃ 10 s,46 ℃ 15 s,72 ℃ 4 min,30个循环;72 ℃ 延伸10 min。1% 琼脂糖凝胶电泳分析PCR产物。用NheⅠ和XhoⅠ酶切质粒载体pET28a和回收纯化的PCR产物。回收酶切产物,用T4 DNA连接酶16 ℃水浴连接过夜,转化至感受态细胞DH5α中,获得原核表达重组质粒命名为pET28a-Truncated-ClfB。重组质粒用NheⅠ和XhoⅠ进行酶切鉴定,并经测序验证。

1.2.3 目的蛋白的表达和纯化

将测序正确的质粒转化大肠杆菌BL21 (DE3),用IPTG诱导对数生长期细菌表达。IPTG终浓度为1 mmol/L,诱导时间为4 h。离心收集诱导后的菌体,用裂解液 (50 mmol/L NaH2PO4,500 mmol/L NaCl,pH 8.0) 重悬菌体,均质仪高压破碎后,裂解液经高速离心得到的上清液即为粗蛋白液。

将得到的粗蛋白液按照Ni-NTA His Tag Kit说明书纯化,用不同浓度咪唑 (50、100、150、200 mmol/L) 的洗脱液依次洗脱Ni-NTA柱,收集的过柱液、漂洗液和洗脱液经12% SDS-PAGE分离后,考马斯亮蓝染色分析。

经过亲和层析纯化的Truncated-ClfB重组蛋白进一步用离子交换层析纯化。层析柱选用Resource Q 1 mL (GE)。缓冲液: A buffer: 10 mmol/L Tris (pH 7.4);B buffer: 10 mmol/L Tris,500 mmol/L NaCl (pH 7.4),收集的样品经12% SDS-PAGE分离后,考马斯亮蓝染色分析。

经过离子交换层析纯化的重组蛋白进一步用分子筛纯化。层析柱选用Hiload 16/600 Superdex200 prepgrade (GE)。缓冲液: 10 mmol/L Tris,150 mmol/L NaCl (pH 7.4),收集的样品经12% SDS-PAGE分离后,考马斯亮蓝染色分析,获得纯度高的Truncated-ClfB。

1.3 Truncated-ClfB抗血清调理吞噬实验 1.3.1 Truncated-ClfB抗血清制备

纯化的Truncated-ClfB蛋白1 mg与弗氏完全佐剂 (Simga公司) 按照1∶1体积乳化后免疫约2 kg重的健康雌性新西兰大白兔2只,两周后,再将纯化的蛋白0.2 mg与弗氏不完全佐剂 (Simga公司) 按照1∶1体积乳化后进行第1次加强免疫,间隔1周后第2次加强免疫。第3次免疫后10 d,将兔子麻醉,心脏取血,收集血清,储存在-80 ℃。

1.3.2 间接ELISA法检测Truncated-ClfB抗血清效价

将Truncated-ClfB蛋白按1 µg/mL浓度包被酶标板,100 µL/孔,于37 ℃温育30 min后,置4 ℃过夜,取出后用洗涤液 (PBST: 0.5 mL Tween-20,137 mmol/L NaCl,2.7 mmol/L KCl,10 mmol/L Na2HPO4,2 mmol/L KH2PO4) 洗涤3次,每次5 min,甩干,每孔加入100 µL封闭液 (含5%脱脂乳的PBST),37 ℃封闭1 h,然后将待检血清用封闭液从1∶5 000开始倍数稀释后加入酶标板,100 µL/孔,室温反应1 h,洗涤3次,甩干,加入1∶10 000羊抗兔IgG-HRP,100 µL/孔,室温反应30 min,经洗涤甩干后,加入TMB显色液100 µL/孔,37 ℃反应10 min,最后加入100 µL 2 mol/L硫酸终止反应,用酶标仪测OD450值。

1.3.3 FITC荧光标记金黄色葡萄球菌

收集对数生长期金黄色葡萄球菌菌体,用PBS重悬后,用Counterstar细胞计数仪计算细菌的数量,根据计算结果将重悬菌液用PBS稀释到1×109 CFU/mL。取1 mL 浓度为1×109 CFU/mL的菌液,加入100 µL 1 mol/L的 NaHCO3溶液,颠倒混匀。分2次加入 FITC溶液 (200 µg/mL),每次加入5 µL,共加入10 µL 使终浓度达到 2 µg/mL,每次加入后颠倒混匀。避光,置于37 ℃静置1 h。孵育完成后,10 000 r/min离心5 min,弃上清。每管加入1 mL PBS洗涤2遍,离心收集细菌后用HBSS重悬,并将细菌的浓度调至2×107 CFU/mL,4 ℃避光保存。

1.3.4 PMN的提取

用含0.5 mL 100 mmol/L EDTA (pH 7.5) 的50 mL离心管收集10 mL新西兰大白兔外周血,用等体积D-HBSS稀释,将全血稀释液小心加至2 mL分离液的上层,避免血液和分离液混合。24 ℃、500×g离心25 min。血液此时应该分为4层:血浆、单核细胞层、分离液中性粒细胞、其余的分离液红细胞沉淀层。将第3、4层收集在15 mL离心管中,用红细胞裂解液裂解2次后,再用D-HBSS清洗细胞2次 (离心时温度为4 ℃),最后用HBSS重悬PMN并将细胞浓度调至3×106个/mL,置于冰上。

1.3.5 PMN吞噬实验

取200 µL浓度为2×107 CFU/mL的FITC标记的金黄色葡萄球菌菌液与25 µL血清在离心管中混匀,37 ℃避光孵育30 min。孵育结束后,10 000 r/min离心5 min,弃上清,用200 µL HBSS重悬菌体,加入100 µL浓度为3×106 个/mL的PMN,轻轻混匀后,继续在37 ℃避光孵育 15 min。将反应体系放在冰上终止吞噬,用终浓度为15 µg/mL的台盼蓝淬灭没有被吞噬的金黄色葡萄球菌的FITC荧光,流式细胞仪检测PMN吞噬率。实验重复4次。

1.4 统计学分析

对多次重复数据以均数±标准误差形式表达,应用GraphPad Prism 6软件分析,采用配对t检验比较组间差异,P<0.05为差异有统计学意义。

2 结果与分析 2.1 重组蛋白表达载体的构建

构建的表达载体经限制性内切酶NheⅠ和XhoⅠ酶切鉴定,切出的目的片段和载体片段与预期大小一致,分别约为1 500 bp和5 000 bp (图2)。测序结构显示序列与NCBI数据库中公布的ClfB N1-N3结构域核苷酸序列 (登录号:AJ938182.1)一致。由此表明我们成功获得了可表达带His-tag标签的重组质粒pET28a-Truncated-ClfB。克隆部分编码了509个氨基酸,相对分子质量为55.4 kDa。

图2 pET 28a-Truncated-ClfB的双酶切鉴定 Fig.2 Identification of pET28a-Truncated-ClfB by restriction endonuclease digestion. M: DNA marker; 1,2: pET28a-Truncated-ClfB digested with NheⅠ and XhoⅠ.
2.2 重组蛋白的纯化

将已成功转化重组质粒pET28a-Truncated- ClfB的BL21 (DE3) 经1 mmol/L的IPTG诱导,收集2 L菌液,破碎后,SDS-PAGE显示在66.2 kDa左右有一表达条带 (图3A)。而理论计算重组蛋白应该为 55.4 kDa,原因可能是His-tag可以影响表达蛋白在聚丙烯酰胺凝胶中的迁移,造成观察到的结果与理论蛋白大小不一致[13]。经过Ni-NTA柱分离纯化,洗脱产物经12%的SDS-PAGE胶分析,被洗脱的蛋白主要集中在100 mmol/L咪唑洗脱液处,随着洗脱液浓度增加,被洗脱的蛋白逐渐减少。

图3 目的蛋白的表达与纯化 Fig.3 Expression (A) and purification (B) of target protein. M: protein marker; 1: total protein before induction; 2: total protein in 4 hours after induction.

为了获得高纯度的Truncated-ClfB蛋白,将Ni-NTA柱纯化后含有蛋白馏分的蛋白液合并,利用GE 公司的Resource Q 1mL离子交换层析和Hiload 16/600 Superdex 200 prepgrade分子筛层析柱进一步纯化。在FPLC中观察纯化产物的出峰位置,结果发现Truncated-ClfB的出峰位置在69 mL,但其出峰位置对应的分子量约为 120 kDa (图3B),约是相应的单体分子的两倍,提示 Truncated-ClfB以二聚体的形式存在。经FPLC 分子筛层析及SDS-PAGE鉴定纯化蛋白的纯度大于95%。纯化的蛋白浓缩收集,分光光度计测蛋白总量为18 mg,用Tris-HCl (10 mmol/L Tris,150 mmol/L NaCl,pH 8.0),10%甘油保存。

2.3 PMN吞噬率检测

为了测定抗体的效价,我们利用ELISA的方法,以一定浓度的抗原 (100 ng) 包被ELISA板,以5 000−640 000倍稀释的抗体与之结合,ELISA数据结果表明免疫前新西兰大白兔的血清中Truncated-ClfB抗体效价低于1∶5 000,三免后10 d的血清中Truncated-ClfB抗体效价高于1: 640 000。

为了检测Truncated-ClfB抗体对PMN吞噬功能的影响,我们将免疫前血清和三免后10 d Truncated-ClfB抗血清分别与FITC标记的金黄色葡萄球菌37 ℃预孵育30 min,加入PMN后继续在37 ℃孵育15 min,无血清预处理组 PMN吞噬率为5.04%±0.33% (图4B),免疫前血清预处理组PMN吞噬率为32.26%±4.54% (图4C),Truncated-ClfB抗血清预处理组PMN吞噬率为41.27%±6.65% (图4D),各组之间差异均有统计学意义 (P<0.05)。

图4 流式细胞术检测PMN吞噬率 Fig.4 Test of the phagocytic rate of PMN by flow cytometry. (A) PMN population selected on the basis of forward and side light scatter. (B) Fluorescence intensity for control PMN incubated with FITC positive S. aureus. (C) Fluorescence intensity for PMN incubated with FITC positive S. aureus Reynolds opsonized with preimmune serum. (D) Fluorescence intensity for PMN incubated with FITC positive S. aureus Reynolds opsonized with immune serum.
3 讨论

金黄色葡萄球菌是目前所知的多种社区传染性疾病与医院院内感染的常见病原菌,其所致疾病的发病率与死亡率均较高[14]。金黄色葡萄球菌存在持续进化的抗药性机制,使其对任何抗生素都有可能产生抗药性[15]。随着抗药性菌株的流行发展,金黄色葡萄球菌将对世界公共卫生事业产生重大影响[16]。疫苗免疫是目前公认的预防金黄色葡萄球菌感染最有效的方法,但是金黄色葡萄球菌疫苗研发却遭遇瓶 颈[17]。究其原因可能是金黄色葡萄球菌是一个多毒力因子病原,单一或者有限的保护性抗原很难保护机体抵抗金黄色葡萄球菌感染[18];另外,金黄色葡萄球菌存在多种免疫逃逸机制,使得疫苗研发更具挑战性[7]。因此,研究人员试图从金黄色葡萄球菌产生的众多毒力因子中鉴定出一种或者几种保护性抗原用于疫苗研 制[19]。MSCRAMM分子作为明星抗原越来越受人关注。如:以纯化的重组ClfA免疫小鼠后能够显著降低关节炎发病率[20];以FnBP A的纤维蛋白结合域蛋白免疫小鼠,能够有效保护因金黄色葡萄球菌感染引起的乳房炎[21]

ClfB是一个MSCRAMM分子,能够结合纤维蛋白原以及内皮细胞表面的Ⅰ型细胞角质素分子K10,是金葡菌在鼻腔粘膜上定植的决定因子。ClfB蛋白由8个结构域组成,其中N1-3结构域参与ClfB蛋白与细胞外基质分子的结合,是ClfB的主要功能区。本研究成功地表达了ClfB N1-N3结构域蛋白。通过亲和层析、离子交换层析与凝胶过滤等纯化方法,获得了纯度大于95%的Truncated-ClfB蛋白。在对Truncated-ClfB蛋白进行分子筛纯化时,我们发现该蛋白的出峰位置大约为69 mL处。通过与标准品出峰位置进行比较后,我们发现Truncated-ClfB蛋白是以二聚体的形式存在。有文献报道,两个ClfB蛋白的N2与N3结构域之间存在主链间的氢键[12],使两个N2N3结构域自组装成同源二聚体从而使其更加牢固地结合细胞外基质分子。由此推断,大肠杆菌表达的Truncated-ClfB能够保持正确的二级结构,可以形成二聚体,具有正确的生物学活性。

调理素依赖性吞噬作用是宿主抵抗金黄色葡萄球菌感染的主要防御机制,因此抗血清的调理吞噬作用常常是评价金黄色葡萄球菌疫苗有效性的一个重要指标[22]。已有研究表明金黄色葡萄球菌的表面抗原铁调控表面决定因子A/B (IsdA/B) 和酪氨酸-丝氨酸富集蛋白D/E (SdrD/E) 抗血清能够显著增强PMN吞噬金黄色葡萄球菌的能力,这些表面抗原在金黄色葡萄球菌疫苗研发中展现出巨大的潜力[23]。本研究将纯化后的Truncated-ClfB蛋白免疫新西兰大白兔,研究结果显示Truncated-ClfB蛋白能够刺激机体产生高效价的特异性抗体 (>1∶640 000)。利用流式细胞术对Truncated-ClfB蛋白抗血清的调理吞噬作用进行了检测,调理吞噬实验显示:相较于空白血清,Truncated-ClfB抗血清能够显著增加PMN对金黄色葡萄球菌的吞噬效率,表明Truncated-ClfB可以作为金黄色葡萄球菌疫苗的候选抗原。本课题为进一步筛选金黄色葡萄球菌疫苗候选抗原奠定了实验基础。

参考文献
[1] Vysakh P, Jeya M. A comparative analysis of community acquired and hospital acquired methicillin resistant Staphylococcus aureus. J Clin Diagn Res, 2013, 7(7): 1339-1342.
[2] Kallen AJ, Reed C, Patton M, et al. Staphylococcus aureus community-onset pneumonia in patients admitted to children's hospitals during autumn and winter of 2006-2007. Epidemiol Infect, 2010, 138(5): 666-672.
[3] Vartzelis G, Theodoridou M, Daikos GL, et al. Brain abscesses complicating Staphylococcus aureus sepsis in a premature infant. Infection, 2005, 33(1): 36-38.
[4] Woodward JF, Sengupta DJ, Cookson BT, et al. Disseminated community-acquired USA300 methicillin-resistant Staphylococcus aureus pyomyositis and septic pulmonary emboli in an immunocompetent adult. Surg Infect (Larchmt), 2010, 11(1): 59-63.
[5] Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol, 2009, 7(9): 629-641.
[6] Corrigan RM, Miajlovic H, Foster TJ. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol, 2009, 9: 22.
[7] Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol, 2014, 12(1): 49-62.
[8] Deivanayagam CCS, Perkins S, Danthuluri S, et al. Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus. Acta Crystallogr D, 1999, 55(2): 554-556.
[9] Atshan SS, Shamsudin MN, Karunanidhi A, et al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). Infect Genet Evol, 2013, 18: 106-112.
[10] O'Brien LM, Walsh EJ, Massey RC, et al. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol, 2002, 4(11): 759-770.
[11] Mulcahy ME, Geoghegan JA, Monk IR, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein Loricrin. PLoS Pathog, 2012, 8(12): e1003092.
[12] Xiang H, Feng Y, Wang JW, et al. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog, 2012, 8(6): e1002751.
[13] Yang MF, Chen CF, Cao XD, et al. The immunogenicity analysis of expression product of the ClfA gene of Staphylococcus aureus in mice. Acta Vet Zootech Sin, 2010, 41(12): 1584-1591 (in Chinese).
杨明锋, 陈创夫, 曹旭东, 等. 金黄色葡萄球菌ClfA基因表达产物在小鼠的免疫原性分析. 畜牧兽医学报, 2010, 41(12): 1584-1591.
[14] Gardella N, Murzicato S, Di Gregorio S, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus among healthy children in a city of Argentina. Infect Genet Evol, 2011, 11(5): 1066-1071.
[15] Pu WX, Su Y, Li JX, et al. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus(OS-MRSA) associated with bovine mastitis in China. PLoS ONE, 2014, 9(2): e88134.
[16] Khanal LK, Jha BK. Prevalence of methicillin resistant Staphylococcus aureus (MRSA) among skin infection cases at a hospital in Chitwan, Nepal. Nepal Med Coll J, 2010, 12(4): 224-228.
[17] Proctor RA. Is there a future for a Staphylococcus aureus vaccine? Vaccine, 2012, 30(19): 2921-2927.
[18] Murphy E, Lin SL, Nunez L, et al. Challenges for the evaluation of Staphylococcus aureus protein based vaccines: monitoring antigenic diversity. Hum Vaccin, 2011, 7(Suppl1): 51-59.
[19] Anderson AS, Miller AA, Donald RGK, et al. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother, 2012, 8(11): 1585-1594.
[20] Josefsson E, Higgins J, Foster TJ, et al. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence. PLoS ONE, 2008, 3(5): e2206.
[21] Hu CM, Gong R, Guo AZ, et al. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine, 2010, 28(24): 4038-4044.
[22] Günther F, Wabnitz GH, Stroh P, et al. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol, 2009, 46(8/9): 1805-1813.
[23] Stranger-Jones YK, Bae T, Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci USA, 2006, 103(45): 16942-16947.
[1] Vysakh P, Jeya M. A comparative analysis of community acquired and hospital acquired methicillin resistant Staphylococcus aureus. J Clin Diagn Res, 2013, 7(7): 1339-1342.
[2] Kallen AJ, Reed C, Patton M, et al. Staphylococcus aureus community-onset pneumonia in patients admitted to children's hospitals during autumn and winter of 2006-2007. Epidemiol Infect, 2010, 138(5): 666-672.
[3] Vartzelis G, Theodoridou M, Daikos GL, et al. Brain abscesses complicating Staphylococcus aureus sepsis in a premature infant. Infection, 2005, 33(1): 36-38.
[4] Woodward JF, Sengupta DJ, Cookson BT, et al. Disseminated community-acquired USA300 methicillin-resistant Staphylococcus aureus pyomyositis and septic pulmonary emboli in an immunocompetent adult. Surg Infect (Larchmt), 2010, 11(1): 59-63.
[5] Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol, 2009, 7(9): 629-641.
[6] Corrigan RM, Miajlovic H, Foster TJ. Surface proteins that promote adherence of Staphylococcus aureus to human desquamated nasal epithelial cells. BMC Microbiol, 2009, 9: 22.
[7] Foster TJ, Geoghegan JA, Ganesh VK, et al. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol, 2014, 12(1): 49-62.
[8] Deivanayagam CCS, Perkins S, Danthuluri S, et al. Crystallization of ClfA and ClfB fragments: the fibrinogen-binding surface proteins of Staphylococcus aureus. Acta Crystallogr D, 1999, 55(2): 554-556.
[9] Atshan SS, Shamsudin MN, Karunanidhi A, et al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). Infect Genet Evol, 2013, 18: 106-112.
[10] O'Brien LM, Walsh EJ, Massey RC, et al. Staphylococcus aureus clumping factor B (ClfB) promotes adherence to human type I cytokeratin 10: implications for nasal colonization. Cell Microbiol, 2002, 4(11): 759-770.
[11] Mulcahy ME, Geoghegan JA, Monk IR, et al. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein Loricrin. PLoS Pathog, 2012, 8(12): e1003092.
[12] Xiang H, Feng Y, Wang JW, et al. Crystal structures reveal the multi-ligand binding mechanism of Staphylococcus aureus ClfB. PLoS Pathog, 2012, 8(6): e1002751.
[13] Yang MF, Chen CF, Cao XD, et al. The immunogenicity analysis of expression product of the ClfA gene of Staphylococcus aureus in mice. Acta Vet Zootech Sin, 2010, 41(12): 1584-1591 (in Chinese).
杨明锋, 陈创夫, 曹旭东, 等. 金黄色葡萄球菌ClfA基因表达产物在小鼠的免疫原性分析. 畜牧兽医学报, 2010, 41(12): 1584-1591.
[14] Gardella N, Murzicato S, Di Gregorio S, et al. Prevalence and characterization of methicillin-resistant Staphylococcus aureus among healthy children in a city of Argentina. Infect Genet Evol, 2011, 11(5): 1066-1071.
[15] Pu WX, Su Y, Li JX, et al. High incidence of oxacillin-susceptible mecA-positive Staphylococcus aureus(OS-MRSA) associated with bovine mastitis in China. PLoS ONE, 2014, 9(2): e88134.
[16] Khanal LK, Jha BK. Prevalence of methicillin resistant Staphylococcus aureus (MRSA) among skin infection cases at a hospital in Chitwan, Nepal. Nepal Med Coll J, 2010, 12(4): 224-228.
[17] Proctor RA. Is there a future for a Staphylococcus aureus vaccine? Vaccine, 2012, 30(19): 2921-2927.
[18] Murphy E, Lin SL, Nunez L, et al. Challenges for the evaluation of Staphylococcus aureus protein based vaccines: monitoring antigenic diversity. Hum Vaccin, 2011, 7(Suppl1): 51-59.
[19] Anderson AS, Miller AA, Donald RGK, et al. Development of a multicomponent Staphylococcus aureus vaccine designed to counter multiple bacterial virulence factors. Hum Vaccin Immunother, 2012, 8(11): 1585-1594.
[20] Josefsson E, Higgins J, Foster TJ, et al. Fibrinogen binding sites P336 and Y338 of clumping factor A are crucial for Staphylococcus aureus virulence. PLoS ONE, 2008, 3(5): e2206.
[21] Hu CM, Gong R, Guo AZ, et al. Protective effect of ligand-binding domain of fibronectin-binding protein on mastitis induced by Staphylococcus aureus in mice. Vaccine, 2010, 28(24): 4038-4044.
[22] Günther F, Wabnitz GH, Stroh P, et al. Host defence against Staphylococcus aureus biofilms infection: phagocytosis of biofilms by polymorphonuclear neutrophils (PMN). Mol Immunol, 2009, 46(8/9): 1805-1813.
[23] Stranger-Jones YK, Bae T, Schneewind O. Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci USA, 2006, 103(45): 16942-16947.