中国科学院微生物研究所,中国微生物学会
文章信息
- 申文雪, 刘金松, 范小燕, 许英蕾, 吴艳萍, 张瑞强. 2022
- SHEN Wenxue, LIU Jinsong, FAN Xiaoyan, XU Yinglei, WU Yanping, ZHANG Ruiqiang.
- 丁酸梭菌替代金霉素对肉鸡腿肌肉品质和抗氧化功能的影响
- Effect of Clostridium butyricum as a replacement of chlortetracycline on quality and antioxidation of broiler leg muscle
- 微生物学报, 62(4): 1464-1472
- Acta Microbiologica Sinica, 62(4): 1464-1472
-
文章历史
- 收稿日期:2021-08-04
- 修回日期:2021-08-20
- 网络出版日期:2021-10-28
2. 浙江惠嘉生物科技股份有限公司, 浙江 安吉 313300
2. Zhejiang Vegamax Biotechnology Co., Ltd., Anji 313300, Zhejiang, China
养殖规模化、高密度使得肉鸡疾病频发,抗生素作为家禽养殖业生长促进剂和药物添加剂,不仅能够提高家禽生长性能,还能预防疾病发生[1]。但是,长期使用抗生素会引起动物机体菌群失调、免疫力下降、病菌产生抗药性、在环境和畜产品中出现残留、富集等现象[2],我国在2020年7月1日明确禁止在饲粮中添加抗生素作为促生长类药物。因此,抗生素替代品研究成为热点。益生菌因具有安全、无残留、可以改善动物生产性能、提高机体免疫力等特点,受到广泛关注[3–4]。
丁酸梭菌,又名酪酸菌,广泛存在于土壤、动物和人的肠道中,为严格厌氧的革兰氏芽孢杆菌,能产生丁酸等有益物质[5],促进肠道对水和钠重吸收的能力[6–7],添加到饲料中可改善动物生产性能、提高饲料利用率和机体抗氧化能力[8–9]。目前,关于丁酸梭菌在家禽生产中的应用,主要集中在调控家禽的生长性能和改善免疫功能等方面,而其对肉鸡腿肌肉品质和抗氧化功能影响的研究几乎没有报道。
肌肉pH、肉色和系水力等指标是肌肉感官和食用适口性的综合反映,不仅决定着消费者的消费取向,亦影响禽肉产品在后期加工和贮藏的质量[10]。已有研究表明,肌肉品质与肌肉的抗氧化功能密切相关,肌肉pH迅速下降,会引起肌肉中可溶性蛋白质凝结,造成肌纤维细胞膜的通透性增加,使得肌肉表面液体渗出增加,而抗氧化物质可降低脂质过氧化对细胞膜的伤害,维持细胞膜完整性,降低肌肉表面光的反射,从而降低肌肉亮度值,提高肌肉红度值,进而改善肌肉品质[11]。Nrf2是细胞氧化损伤调节的主要信号,其发挥抗氧化功能主要是通过调控下游相关酶和抗氧化基因的表达水平,从而有效地缓解机体的氧化应激程度,降低氧化应激诱发的损伤作用[12]。因此,本研究通过在日粮中添加丁酸梭菌或金霉素,探讨二者对肉鸡腿肌肉品质、抗氧化功能和Nrf2相关基因的影响,为丁酸梭菌替代金霉素应用于家禽生产提供科学参考。
1 材料与方法 1.1 材料1日龄AA肉仔鸡(常州玉成禽苗批发基地有限公司);金霉素(粉剂,纯度为20%,浙江惠嘉生物科技股份有限公司);丁酸梭菌(活菌数109 CFU/g,浙江惠嘉生物科技股份有限公司);色差仪(HunterLab公司);pH计(Hanna Instruments公司);电热鼓风干燥箱(上海锦屏仪器仪表有限公司);自动定氮仪(上海纤检仪器有限公司);陶瓷纤维马弗炉(广州越特科学仪器有限公司);脂肪测定仪(海能仪器股份有限公司);抗氧化酶试剂盒(南京建成生物工程研究所);RNAiso试剂、PrimeScriptTM Realtime PCR kit试剂盒(TaKaRa公司);微量分光光度计(杭州奥盛仪器有限公司);梯度PCR仪(杭州博日科技有限公司);Bio-Rad C1000 TouchTM 96孔快速PCR仪(上海孚约商贸有限公司)。
1.2 方法随机选取健康、体重均匀的1日龄AA肉仔鸡360只,分为3组,每组8个重复,每个重复15只,分别为阴性对照组(CON)、抗生素组(ANT)和丁酸梭菌组(CB)。CON组仅饲喂基础日粮,ANT组在基础日粮中额外添加75 mg/kg的金霉素(以纯品计),CB组在基础日粮中额外添加500 mg/kg的丁酸梭菌(活菌数109 CFU/g)[13–15]。基础日粮的配制方法参考NRC (1994)[16],基础日粮配方和营养水平见表 1。
Items | 0 to 21 days of age | 21 to 42 days of age |
Composition/% | ||
Corn | 52.5 | 54 |
Soybean (CP43 %) | 25 | 17 |
Extruded-soybean | 4.5 | 3.5 |
DDGS | 8.5 | 7.5 |
Rice bran | 6 | |
Corn bran | 2 | |
Soybean meal | 1.7 | 4.6 |
Limestone | 1.4 | 1.4 |
Fermented soybean meal | 2.4 | |
Premix① | 4 | 4 |
Total | 100.00 | 100.00 |
Nutrient levels② | ||
Crude protein/% | 22.02 | 19.11 |
Metabolizable energy/(MJ/kg) | 12.23 | 12.91 |
Ether extract/% | 5.50 | 8.6 |
Lys/% | 1.18 | 0.97 |
Met/% | 0.54 | 0.45 |
Met+Cys/% | 0.88 | 0.74 |
Thr/% | 0.86 | 0.71 |
Trp/% | 0.23 | 0.20 |
Ca/% | 0.82 | 0.73 |
TP/% | 0.65 | 0.57 |
①The premix provided the following per kg of diets: VA 10 000 IU, VB1 2.2 mg, VB2 8.0 mg, VB5 40 mg, VB6 4.0 mg, VB12 0.013mg, VD3 3 000 IU, VE 30 IU, VK3 1.3 mg, nicotinic acid 40 mg, biotin 0.04 mg, folic acid 40 mg, choline chloride 400 mg, D-pantothenate calcium 10 mg, Se 0.3 mg, Fe 80 mg, Mn 110 mg, Zn 65 mg, Cu 7.5 mg, I 1 mg. ②Metabolizable energy is calculated value, the others are measured values. |
1.3 饲养管理
1日龄AA肉仔鸡饲养于同一栋鸡舍,每个重复饲养于同一个笼内,试验期间全程自由采食和饮水,24 h光照,每天清洗饮水器1次,消毒、免疫接种及疾病预防按常规方法进行。
1.4 样品采集于试验期第42天,空腹12 h后,分别从各试验笼中选取一只生长状况中等的肉鸡,共计24只,进行屠宰取样,采集左侧腿肌样品称重后用于肉品质检测,采集右侧腿肌样品用于常规化学成分和抗氧化功能相关指标的检测。
1.5 腿肌肉品质和常规成分的测定根据Jiao等[17]描述的方法测定腿肌的滴水损失、蒸煮损失、屠宰45 min和24 h后的肉色(L*:亮度;a*:红度;b*:黄度)以及屠宰45 min和24 h后的pH。腿肌常规化学成分水分(moisture)、粗蛋白(crude protein,CP)、粗脂肪(ether extract,EE)和灰分(ash)含量的测定参照食品安全国家标准[18–21]进行。
1.6 腿肌抗氧化酶的测定取右腿肌肉组织样品按照试剂盒说明书,检测T-SOD (羟胺法)、MDA (硫代巴比妥酸法)、T-AOC (Fe2+还原法)、CAT(钼酸铵法)和GPx(酶促比色法)的水平。
1.7 腿肌抗氧化基因表达的测定利用RNAiso试剂进行肌肉RNA的提取和洗涤,使用微量分光光度计测定RNA的纯度和浓度。反转录过程使用商业试剂盒PrimeScriptTM Realtime PCR kit进行,去除基因组DNA,反应体系为10 μL:2 μL 5×gDNA Eraser Buffer,1 μL gDNA Eraser,7 μL RNase Free dH2O,反应条件为:42 ℃ 2 min,4 ℃冷却;反转录体系为20 μL:10 μL去除基因组DNA反应液,1 μL PrimeScript RT Enzyme Mix I,1 μL RT Primer Mix,4 μL 5×PrimeScript Buffer 2,4 μL RNase Free dH2O,反应条件为:37 ℃孵育15 min,85 ℃孵育5 s,4 ℃冷却。从GenBank中获得目的基因序列,取保守区域使用软件Primer Premier 5设计引物,所需引物由杭州擎科梓煕生物技术有限公司合成,引物序列见表 2。使用TB Green Premix Ex Taq Ⅱ进行real- time PCR反应。反应体系采用20 μL体系进行:10 μL TB Green Mix Taq,0.8 μL上游引物,0.8 μL下游引物,2 μL cDNA模板,6.4 μL DEPC水。反应条件为:95 ℃预变性2 min;95 ℃变性5 s,60 ℃退火30 s,40个循环。基因的相对表达水平采用2–ΔΔCT法计算。
Target genes | Accession No. | Forward primers (5′→3′) | Reverse primers (5′→3′) |
Nrf2 | NM_205117.1 | GATGTCACCCTGCCCTTAG | CTGCCACCATGTTATTCC |
Keap1 | KU_321503.1 | GTACCAGATCGACAGCGTGG | GGCAGTGGGACAGGTTGAAG |
HO-1 | NM_205344 | GGTCCCGAATGAATGCCCTTG | ACCGTTCTCCTGGCTCTTGG |
CAT | NM_001031215.1 | CGTTGGCGGTAGGAGTC | CCAGTGGTCAAGGCATCT |
SOD-1 | NM_205064.1 | TTGTCTGATGGAGATCATGGCTTC | TGCTTGCCTTCAGGATTAAAGTGAG |
SOD-2 | NM_204211.1 | CAGATAGCAGCCTGTGCAAATCA | GCATGTTCCCATACATCGATTCC |
GPx-1 | NM_001277853.1 | CGCTACAGCCGCCACTT | TTCGGAGAATCCCACAACG |
1.8 统计分析
试验数据利用统计产品与服务解决方案(statistical product and service solutions,SPSS) 21.0软件进行单因子方差分析(one-way ANOVA),并采用邓肯氏(Duncan’s)法进行组间多重比较检验,P > 0.05表示差异不显著,P < 0.05表示差异显著,结果用平均值和标准误(the standard error of means,SEM)表示。
2 结果与分析 2.1 丁酸梭菌对肉鸡腿肌肌肉品质的影响由表 3可知,CB组肉鸡腿肌重、屠宰后24 h的a*、pH45 min和pH24 h显著高于CON组(P < 0.05),屠宰后24 h后的L*和蒸煮损失显著低于CON组(P < 0.05),屠宰后24 h和48 h后的滴水损失显著低于CON组(P < 0.05)。ANT组肉鸡腿肌重和pH45 min显著高于CON组(P < 0.05),屠宰24 h和48 h后的滴水损失显著低于CON组(P < 0.05)。ANT组肉鸡腿肌屠宰24 h和48 h后的滴水损失显著高于CB组(P < 0.05),24 h的L*显著高于CB组(P < 0.05)。
Items | CON | ANT | CB | SEM | P-value | |
Leg muscle weight/g | 294.48b | 340.08a | 340.75a | 8.07 | 0.019 | |
Meat color at 45 min | L* | 35.32 | 32.19 | 32.30 | 1.20 | 0.502 |
a* | 22.39 | 23.73 | 22.72 | 0.39 | 0.365 | |
b* | 11.85 | 13.20 | 13.61 | 2.69 | 0.412 | |
Meat color at 24 h | L* | 27.63a | 25.42a | 24.81b | 0.47 | 0.029 |
a* | 22.20b | 23.69ab | 25.72a | 0.60 | 0.049 | |
b* | 26.47 | 26.50 | 27.68 | 0.52 | 0.576 | |
pH | pH45 min | 5.88b | 6.10a | 6.10a | 0.35 | 0.013 |
pH24 h | 5.70b | 5.79ab | 5.86a | 0.03 | 0.044 | |
Drip loss/% | 24 h | 4.95a | 4.27b | 3.63c | 0.13 | < 0.001 |
48 h | 7.39a | 6.38b | 5.32c | 0.21 | < 0.001 | |
Cooking loss/% | 28.47a | 23.99ab | 23.57b | 0.79 | 0.012 | |
In the same row, values with the no letter or same superscripts mean no significant difference (P > 0.05), means with different is superscript letters in the same row differ significantly (P < 0.05). The same as below. |
2.2 丁酸梭菌对肉鸡腿肌肉常规化学成分的影响
由表 4可知,CB组肉鸡腿肌肉粗蛋白质和粗脂肪含量显著高于CON组(P < 0.05),水分、有机物和灰分含量与CON组相比无显著性差异(P > 0.05)。ANT组肉鸡腿肌肉与CON组水分、有机物、粗蛋白质、粗脂肪和灰分均未表现出显著性差异(P > 0.05)。CB组肉鸡腿肌肉粗脂肪含量显著高于ANT组(P < 0.05)。
Items | CON | ANT | CB | SEM | P-value |
Moisture | 74.86 | 73.79 | 73.07 | 0.37 | 0.150 |
Organic matter | 23.27 | 24.49 | 25.06 | 0.38 | 0.148 |
Crude protein | 19.42b | 20.07ab | 21.63a | 0.35 | 0.034 |
Ether extract | 3.82b | 4.08b | 5.15a | 0.21 | 0.028 |
Crude ash | 1.87 | 1.72 | 1.86 | 0.07 | 0.617 |
2.3 丁酸梭菌对肉鸡腿肌抗氧化能力的影响
由表 5可知,CB组肉鸡腿肌T-AOC、T-SOD、CAT和GPx水平均显著高于CON组(P < 0.05),MDA含量显著低于CON组(P < 0.05)。ANT组肉鸡腿肌MDA含量显著低于CON组(P < 0.05),T-AOC、T-SOD、CAT和GPx水平与CON组无显著性差异(P > 0.05)。CB组肉鸡腿肌CAT含量显著高于ANT组(P < 0.05)。
Items | CON | ANT | CB | SEM | P-value |
T-AOC/(U/mg protein) | 0.33b | 0.47ab | 0.55a | 0.03 | 0.013 |
T-SOD/(U/mg protein) | 45.63b | 57.05ab | 60.36a | 2.56 | 0.039 |
CAT/(U/mg protein) | 0.71b | 0.95b | 1.44a | 0.08 | < 0.001 |
GPx/(U/mg protein) | 14.66b | 17.79ab | 20.62a | 0.80 | 0.005 |
MDA/(nmol/mg protein) | 0.37a | 0.28b | 0.24b | 0.02 | 0.007 |
2.4 丁酸梭菌对肉鸡腿肌抗氧化相关基因表达的影响
由表 6可知,CB组肉鸡腿肌抗氧化基因Nrf2、GPx-1、SOD-1和SOD-2的表达水平显著高于CON组(P < 0.05);ANT组肉鸡腿肌抗氧化基因Nrf2、GPx-1和SOD-1的表达水平显著高于对照组(P < 0.05);CB组和ANT组肉鸡腿肌Nrf2、Keap1、GPx-1、SOD-1、SOD-2、CAT和HO-1的表达水平无显著性差异(P > 0.05)。
Items | CON | ANT | CB | SEM | P-value |
Nrf2 | 1.00b | 1.54a | 1.70a | 0.11 | 0.022 |
Keap1 | 1.00 | 0.77 | 0.74 | 0.07 | 0.222 |
GPx-1 | 1.00b | 1.60a | 1.69a | 0.11 | 0.019 |
SOD-1 | 1.00b | 1.45a | 1.50a | 0.08 | 0.013 |
SOD-2 | 1.00b | 1.32ab | 1.60a | 0.09 | 0.013 |
CAT | 1.00 | 1.18 | 1.35 | 0.08 | 0.179 |
HO-1 | 1.00 | 1.31 | 1.34 | 0.10 | 0.299 |
3 讨论
在肉色指标测定中,L*值越高,肉色发白变软,肉品质越差,且L*值与pH值是负相关关系[10]。滴水损失和蒸煮损失是衡量肌肉系水力强弱的2个重要指标,其值越低则说明系水力越高,而系水力越高,说明肌肉鲜嫩多汁[22–23]。本研究的CB组,其pH值和屠宰24 h后的a*值显著提高,滴水损失和蒸煮损失以及屠宰24 h后的L*值显著降低,提示丁酸梭菌可改善肉鸡腿肌肉品质,且结果与前人研究的L*值与pH值呈负相关关系一致[10];屠宰后45 min和24 h肉鸡腿肌肉的pH值显著升高,推测丁酸梭菌可能通过减少肌肉的无氧呼吸,从而减少乳酸的生成,进而提高肉鸡腿肌肉的pH值;滴水损失和蒸煮损失的降低,提示丁酸梭菌能够提高肉鸡腿肌肉的保水性能。此外,本研究发现,抗生素仅改善了肉鸡的腿肌重、pH45 min和滴水损失,且ANT组肉鸡腿肌屠宰24 h和48 h后的滴水损失显著高于CB组,提示丁酸梭菌在调控肉鸡腿肌肉发育和系水力方面优于金霉素。
研究表明,日粮中添加109 CFU/kg丁酸梭菌可调控肉鸡肠道菌群的脂代谢,提高42日龄肉鸡腿肌肌内的脂肪沉积[24]。本研究发现,丁酸梭菌不仅可提高肉鸡腿肌肉粗脂肪含量,还可提高肌肉粗蛋白质的含量,推测可能是添加的丁酸梭菌的剂量、日粮组成和饲养环境等不同所引起。刘亭婷等[25]的研究表明,丁酸梭菌可促进肠道有益菌增殖,抑制有害菌的增殖,调控动物肠道菌群平衡,推测本研究丁酸梭菌改善肌肉营养物质沉积的原因可能是:丁酸梭菌进入肉鸡肠道后,调节了肠道微生物菌群平衡[25],增加了肠道绒毛高度与隐窝深度的比值,提高了肠道的消化吸收功能[14],从而改善了肌肉的脂代谢和蛋白质代谢过程,进而改善了肌肉营养物质沉积。此外,本试验中CB组的粗脂肪含量显著高于ANT组,说明丁酸梭菌在调控肉鸡腿肌肉脂代谢方面优于金霉素。
研究表明,日粮中添加丁酸梭菌可提高肉鸡肠道中GPx活性,降低肠道中MDA含量[9]。本研究表明,日粮中添加丁酸梭菌可提高肉鸡腿肌T-AOC、T-SOD和GPx活性,降低MDA含量,提示丁酸梭菌可提高肉鸡腿肌的抗氧化能力。丁酸梭菌代谢可产生氢气、丁酸钠、丁酸等产物[5],Ohsawa等研究发现氢气不仅是重要的生理调节因子,还通过选择性地清除机体羟自由基,调控机体抗氧化功能[26],Zhang等研究表明,丁酸钠可降低肉鸡胸肌中MDA含量,增加CAT的活性[27],推测丁酸梭菌提高肉鸡腿肌抗氧化功能与丁酸梭菌的代谢产物有关。此外,本研究亦发现,与ANT组相比,CB组肉鸡腿肌的T-AOC和CAT水平提高,表明丁酸梭菌对改善肉鸡腿肌抗氧化性能的效果可能优于金霉素。
Nrf2的激活可上调SOD相关蛋白表达水平,抑制线粒体氧化应激反应,降低氧化应激损伤[28–29]。SOD具有抗炎、抗病毒、抗辐射、抗衰老等作用,可将机体内氧化自由基还原,维持机体氧化与抗氧化的动态平衡[30]。Endo等研究亦表明,MIYAIRI 588 (一种产丁酸的益生菌)可诱导大鼠Nrf2基因的表达,激活下游基因,增强机体的抗氧化功能[31]。本试验结果表明,丁酸梭菌提高了肉鸡腿肌Nrf2、GPx-1、SOD-1和SOD-2基因的表达水平,这与本试验中抗氧化酶活性结果一致。本试验还发现,ANT组仅上调了Nrf2、GPx-1和SOD-1的基因表达水平,提示丁酸梭菌改善肉鸡腿肌的抗氧化能力优于金霉素。
4 结论丁酸梭菌可替代金霉素应用于肉鸡饲料日粮中,其可改善肉鸡腿肌肉的品质,增强抗氧化能力,且作用效果优于金霉素。
[1] | Sen S, Ingale SL, Kim JS, Kim KH, Kim YW, Khong C, Lohakare JD, Kim EK, Kim HS, Kwon IK, Chae BJ. Effect of supplementation of Bacillus subtilis LS 1-2 grown on Citrus-juice waste and corn-soybean meal substrate on growth performance, nutrient retention, caecal microbiology and small intestinal morphology of broilers. Asian-Australasian Journal of Animal Sciences, 2011, 24(8): 1120-1127. DOI:10.5713/ajas.2011.10443 |
[2] | Mehdi Y, Létourneau-Montminy MP, Gaucher ML, Chorfi Y, Suresh G, Rouissi T, Brar SK, Côté C, Ramirez AA, Godbout S. Use of antibiotics in broiler production: global impacts and alternatives. Animal Nutrition, 2018, 4(2): 170-178. DOI:10.1016/j.aninu.2018.03.002 |
[3] | Kabir SML, Rahman MM, Rahman MB, Rahman MM, Ahmed SU. The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science, 2004, 3(5): 361-364. DOI:10.3923/ijps.2004.361.364 |
[4] | Hasan MN, Azad MAK, Rabbani MAG, Yeasmin T, Rashid MHO. Growth performances and meat yield characteristics of commercial cockerels fed antibiotic and probiotic. Journal of Advanced Veterinary and Animal Research, 2020, 7(3): 471-476. DOI:10.5455/javar.2020.g443 |
[5] | Hagihara M, Kuroki Y, Ariyoshi T, Higashi S, Fukuda K, Yamashita R, Matsumoto A, Mori T, Mimura K, Yamaguchi N, Okada S, Nonogaki T, Ogawa T, Iwasaki K, Tomono S, Asai N, Koizumi Y, Oka K, Mikamo H. Clostridium butyricum modulates the microbiome to protect intestinal barrier function in mice with antibiotic-induced dysbiosis. iScience, 2020, 23(1): 100772. DOI:10.1016/j.isci.2019.100772 |
[6] | Nakanishi S, Kataoka K, Kuwahara T, Ohnishi Y. Effects of high amylose maize starch and Clostridium butyricum on metabolism in colonic microbiota and formation of azoxymethane-induced aberrant crypt foci in the rat colon. Microbiology and Immunology, 2003, 47(12): 951-958. DOI:10.1111/j.1348-0421.2003.tb03469.x |
[7] | Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut, 1994, 35(1 Suppl): S35-S38. DOI:10.1136/gut.35.1_Suppl.S35 |
[8] | Liu YH, Li YY, Feng XC, Wang Z, Xia ZF. Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks. Poultry Science, 2018, 97(9): 3218-3229. DOI:10.3382/ps/pey162 |
[9] | Liao XD, Wu RJ, Ma G, Zhao LM, Zheng ZJ, Zhang RJ. Effects of Clostridium butyricum on antioxidant properties, meat quality and fatty acid composition of broiler birds. Lipids in Health and Disease, 2015, 14: 36. DOI:10.1186/s12944-015-0035-0 |
[10] | Liu J, Ruusunen M, Puolanne E, Ertbjerg P. Effect of pre-rigor temperature incubation on sarcoplasmic protein solubility, calpain activity and meat properties in porcine muscle. LWT-Food Science and Technology, 2014, 55(2): 483-489. DOI:10.1016/j.lwt.2013.10.001 |
[11] | Ciobanu MM. The influence of the temperature and of the freezing time on broiler chicken meat color. Scientific Papers Animal Science & Biotechnologies, 2015, 42(4): 549-565. |
[12] | Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cellular and Molecular Life Sciences, 2016, 73(17): 3221-3247. DOI:10.1007/s00018-016-2223-0 |
[13] | Liao XD, Ma G, Cai J, Fu Y, Yan XY, Wei XB, Zhang RJ. Effects of Clostridium butyricum on growth performance, antioxidation, and immune function of broilers. Poultry Science, 2015, 94(4): 662-667. DOI:10.3382/ps/pev038 |
[14] | Zhao X, Ding X, Yang ZB, Shen YR, Shao D, Shi SR. Effects of Clostridium butyricum on growth performance, lipid metabolism and the caecal microecological environment of broilers. European Poultry Science: Verlag Eugen Ulmer, 2017, 81: 187. |
[15] |
Xu CX, Wang ZY, Yang HM, Wang YC, Zhong XQ, Yang ZF. Effects of chitosan oligosaccharide and Clostridium butyricum on growth performance, blood biochemical index, relative weight of internal organs of broilers. China Poultry, 2018, 40(18): 26-30.
(in Chinese) 徐晨希, 王志跃, 杨海明, 王迎春, 仲向前, 杨征烽. 壳寡糖和丁酸梭菌对肉仔鸡生长性能、血清生化指标及内脏器官相对重的影响. 中国家禽, 2018, 40(18): 26-30. |
[16] | Dale N. National research council nutrient requirements of poultry-ninth revised edition (1994). Journal of Applied Poultry Research, 1994, 3(1): 101. DOI:10.1093/japr/3.1.101 |
[17] | Jiao Y, Park JH, Kim YM, Kim IH. Effects of dietary methyl sulfonyl methane (MSM) supplementation on growth performance, nutrient digestibility, meat quality, excreta microbiota, excreta gas emission, and blood profiles in broilers. Poultry Science, 2017, 96(7): 2168-2175. DOI:10.3382/ps/pew480 |
[18] | 中国标准出版社. GB 5009.3-2016食品安全国家标准食品中水分的测定. 北京: 中国标准出版社, 2019. |
[19] | 中国标准出版社. GB 5009.4-2016食品安全国家标准食品中灰分的测定. 北京: 中国标准出版社, 2017. |
[20] | 中国标准出版社. GB 5009.5-2016食品安全国家标准食品中蛋白质的测定. 北京: 中国标准出版社, 2017. |
[21] | 中国标准出版社. GB 5009.6-2016食品安全国家标准食品中脂肪的测定. 北京: 中国标准出版社, 2017. |
[22] | Kuźniacka J, Banaszak M, Biesek J, Maiorano G, Adamski M. Effect of Faba bean-based diets on the meat quality and fatty acids composition in breast muscles of broiler chickens. Scientific Reports, 2020, 10: 5292. DOI:10.1038/s41598-020-62282-7 |
[23] | Abdullah AY, Al-Beitawi NA, Rjoup MMS, Qudsieh RI, Ishmais MAA. Growth performance, carcass and meat quality characteristics of different commercial crosses of broiler strains of chicken. The Journal of Poultry Science, 2010, 47(1): 13-21. DOI:10.2141/jpsa.009021 |
[24] | Zhao X, Guo YM, Guo SS, Tan JZ. Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism, and cecal microbiota of broiler chickens. Applied Microbiology and Biotechnology, 2013, 97(14): 6477-6488. DOI:10.1007/s00253-013-4970-2 |
[25] |
Liu TT, Hua J, Wang XX, Liu LR, Hai P. Clostridium butyricum: effects on intestinal microflora, morphology and mucosal immunity-associated cells in egg-laying male chicks. Chinese Journal of Animal Nutrition, 2012, 24(11): 2210-2221.
(in Chinese) 刘亭婷, 滑静, 王晓霞, 刘莉如, 海鹏. 丁酸梭菌对蛋用仔公鸡肠道菌群、形态结构及黏膜免疫相关细胞的影响. 动物营养学报, 2012, 24(11): 2210-2221. DOI:10.3969/j.issn.1006-267x.2012.11.020 |
[26] | Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura KI, Katayama Y, Asoh S, Ohta S. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nature Medicine, 2007, 13(6): 688-694. DOI:10.1038/nm1577 |
[27] | Zhang WH, Gao F, Zhu QF, Li C, Jiang Y, Dai SF, Zhou GH. Dietary sodium butyrate alleviates the oxidative stress induced by corticosterone exposure and improves meat quality in broiler chickens. Poultry Science, 2011, 90(11): 2592-2599. DOI:10.3382/ps.2011-01446 |
[28] | Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. Journal of Cellular Physiology, 2020, 235(4): 3119-3130. DOI:10.1002/jcp.29219 |
[29] | Zhang R, Chae S, Lee JH, Hyun JW. The cytoprotective effect of butin against oxidative stress is mediated by the up-regulation of manganese superoxide dismutase expression through a PI3K/Akt/Nrf2-dependent pathway. Journal of Cellular Biochemistry, 2012, 113(6): 1987-1997. DOI:10.1002/jcb.24068 |
[30] | Piao CS, Gao S, Lee GH, Kim DS, Park BH, Chae SW, Chae HJ, Kim SH. Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial KATP channels. Pharmacological Research, 2010, 61(4): 342-348. DOI:10.1016/j.phrs.2009.11.009 |
[31] | Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One, 2013, 8(5): e63388. DOI:10.1371/journal.pone.0063388 |