微生物学报  2022, Vol. 62 Issue (4): 1260-1269   DOI: 10.13343/j.cnki.wsxb.20210477.
http://dx.doi.org/10.13343/j.cnki.wsxb.20210477
中国科学院微生物研究所,中国微生物学会

文章信息

黄星宇, 郭未蔚, 耿梦馨, 庄琢琛, 白利平. 2022
HUANG Xingyu, GUO Weiwei, GENG Mengxin, ZHUANG Zhuochen, BAI Liping.
链霉菌的全局调控蛋白DasR
Global regulatory protein DasR in Streptomyces
微生物学报, 62(4): 1260-1269
Acta Microbiologica Sinica, 62(4): 1260-1269

文章历史

收稿日期:2021-08-10
修回日期:2021-09-23
网络出版日期:2022-02-15
链霉菌的全局调控蛋白DasR
黄星宇 , 郭未蔚 , 耿梦馨 , 庄琢琛 , 白利平     
中国医学科学院北京协和医学院医药生物技术研究所, 卫健委抗生素生物工程重点实验室, 北京 100050
摘要:链霉菌能够产生多种次级代谢产物,在临床、农牧业、生物技术等领域具有重要应用价值;对链霉菌的调控网络进行深入研究有助于提高次级代谢产物产量并发现新的次级代谢产物。链霉菌中次级代谢产物生物合成按调控通路分为全局调控与途径特异性调控,其中全局调控蛋白可靶向多种通路特异调控基因和生物合成基因,在链霉菌的生命活动中发挥着更为普遍、复杂的调控作用,因此研究全局调控对于进一步认识链霉菌复杂调控网络具有重要的意义。DasR作为一个全局调控蛋白,在链霉菌的营养感应、形态分化和次级代谢中发挥重要作用,本文从DasR的结构、序列和作用特点出发,联系链霉菌生长发育和次级代谢、营养感应和初级代谢等讨论DasR的研究进展。
关键词DasR蛋白    链霉菌    全局调控    次级代谢    营养感应    
Global regulatory protein DasR in Streptomyces
HUANG Xingyu , GUO Weiwei , GENG Mengxin , ZHUANG Zhuochen , BAI Liping     
NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
Abstract: Streptomycetes produce a variety of secondary metabolites, which are highly valuable in clinical practice, agriculture, animal husbandry, biotechnology, etc. The research on the regulatory networks of secondary metabolites in Streptomycetes will improve their yields and facilitate the discovery of novel secondary metabolites. The biosynthesis of secondary metabolites in Streptomycetes can be regulated in a global or pathway-specific manner. The global regulators can target multiple pathway-specific genes and biosynthesis genes, playing a universal and complicated role. Therefore, studying the global regulation will improve the understanding of the complicated regulation networks in Streptomycetes. DasR, a global regulator, plays a key role in the nutrient sensing, morphological changing, and secondary metabolism. In this review, we summarized the structure, sequence, and function of DasR, and reviewed the research findings on role of DasR in the growth, secondary metabolism, nutrient sensing, and primary metabolism of Streptomycetes.
Keywords: DasR    Streptomyces    global regulation    secondary metabolism    nutrient sensing    

链霉菌是一类在土壤中广泛分布的、具有分枝状菌丝的革兰氏阳性菌,具有复杂的形态分化和次级代谢过程,可产生种类繁多的次级代谢产物,具有多种应用价值[1]。临床使用的抗生素中,链霉菌(包括直接和间接)来源的占三分之二以上,如四环素、红霉素、链霉素等;农业上广泛应用抗生素作为防治病虫害的手段,如阿维菌素用于抗家畜寄生虫,链霉素用于防治西红柿青枯病等;生物实验中抗性筛选常用的抗生素如卡那霉素等,均来源于链霉菌次级代谢产物。就目前报道的抗生素而言,绝大部分抗生素的生物合成基因在链霉菌染色体上成簇存在,抗生素产生也受到多层次复杂的调控。了解链霉菌次级代谢调控机制,可定向优化药物产生菌,如关闭非必要代谢途径,提高目标化合物生物合成效能;也可改善化合物产生菌发酵条件,提高目标化合物产量等。

链霉菌的生长需要碳源、氮源和无机磷酸盐等,参与链霉菌的初级代谢,而全局调控蛋白在介导链霉菌初级和次级代谢转换过程中发挥重要功能,在链霉菌的生命进程中发挥至关重要的作用。例如全局调控蛋白GlnR[2]和PhoP[3]通过分别监控链霉菌氮代谢和磷酸盐代谢状态,共同控制抗生素的生物合成。而大量研究工作表明,全局调控蛋白DasR是平衡链霉菌中碳源和氮源代谢的交叉点,通过与中间代谢产物GlcNAc-6P和GlcN-6P结合,在介导链霉菌营养感应、形态分化、初级和次级代谢转换等方面发挥着重要作用[1, 45]。本文结合DasR的结构和作用特点,联系形态分化、营养感应和次级代谢等方面进行综述。

1 DasR蛋白结构及靶序列分析

转录阻抑蛋白DasR最先在灰色链霉菌(Streptomyces griseus)中发现并命名,在许多链霉菌及其他放线菌如枯草芽孢杆菌(Bacillus subtilis)、红色糖多孢菌(Saccharopolyspora erythraea)等菌中也有发现和研究,其中以天蓝色链霉菌(Streptomyces coelicolor)为模式菌株的相关研究最多也最系统化。DasR属于GntR/HutC家族,GntR家族转录因子通常由两部分组成,N端的DNA结合结构域(DNA binding domain,DBD)和C端的效应物结合结构域(effector binding domain,EBD)[6]。GntR家族转录因子的特点是在DBD具有相对保守的二级结构,具有3个α螺旋与2个β折叠,这些二级结构元件的相对位置关系相似,按α1α2α3β1β2的顺序排列,并在α2和α3螺旋处形成helix-turn-helix(HTH) 结构[7]。而EBD是决定GntR家族蛋白功能的主要部分,根据EBD的不同,可将其进一步细分为4个亚家族:FadR、HutC、MocR和YtrA。DasR属于HutC亚家族,其EBD由6个α螺旋与7个β折叠组成,按αβαββαααβαβββ的顺序排列。晶体学研究表明,无DNA片段或配体分子结合时,DasR蛋白以二聚体形式存在,图中蓝色部分和灰色部分各为1个DasR蛋白单体(图 1A);图 1B中,圆柱状部分为α螺旋,带箭头部分为β折叠;GlcNAc-6P与GlcN-6P能够占据DasR蛋白中EBD部分的效应分子结合位点(图 1C),磷酸化糖以类似三明治状的构型结合于αE1螺旋和αE5螺旋中间(图 1D)。N-乙酰葡糖胺(N-acetylglucosamine,GlcNAc)代谢衍生物GlcNAc-6P与GlcN-6P结合DasR蛋白后,发挥变构调节作用以解除由DasR结合dre对下游基因的阻碍作用[8]。体外实验进一步证实GlcNAc-6P与GlcN-6P能够降低DasR与dre位点的亲和力,解除其对下游基因的抑制作用[9]

图 1 DasR蛋白结构图[8] Figure 1 Structure of DasR[8]. A: DasR dimer without DNA or a potential effector molecule; B: topology plot of full-length DasR in the ligand-free state; C: crystal structure of dimeric DasR-EBD bound to GlcN-6-P; D: topology plot of monomeric DasR-EBD in complex with GlcN-6-P.

在天蓝色链霉菌中,存在大量的DasR反应元件(DasR responsive elements,dre),实验证明DasR能与启动子区域的dre直接结合,并调控其下游基因的转录,在此意义上,DasR可被称作多效性途径特异调节蛋白[10],研究证实dre特征序列为16 bp的回文序列A(G/C)TGGTCTA GACCA(G/C)T[11]。这些结合位点被发现广泛分布于磷酸转移酶系统(phosphotransferase system,PTS)相关基因、几丁质酶相关基因(chi)和抗生素次级代谢相关基因等,说明DasR在链霉菌营养感应和代谢系统中发挥重要作用[1213]。Świątek- Połatyńska等[14]进一步通过dasR突变株转录组分析和DasR体内DNA结合实验分析发现,具有dre特征序列的基因位点可归结为DasR的第一类靶位点,与DasR结合体现出很强的时间特异性;如在24 h (营养生长期)时,DasR与初级代谢相关基因nagchipts的所有基因均有结合,但其中的chiCchiHsco6300sco6345sco7225在54 h (孢子形成期)未观察到结合;而形态分化和抗生素合成相关的基因只在54 h后检测到与DasR有结合;这是首次在体内发现该调控蛋白只在生长发育的特定时期与特定的基因结合,而不仅仅是体外实验中亲和力强弱的改变。此外,在体内的DNA结合实验中还发现了与dre没有明显序列相似性的结合位点,这些位点涵盖了大量具有其他功能的基因,如sRNA和DNA转座酶等,称之为DasR蛋白的第二类靶位点。此外,在DasR的第一类靶位点中,也发现了一些ncRNA和tRNA,如最近的研究中发现,非编码RNA scr5239控制链霉菌的碳源代谢,而scr5239的表达则受到全局调控蛋白DasR的直接调控[15]

本实验室研究发现的链霉菌139能够合成一种胞外多糖依博素,具有显著的抗炎和免疫刺激作用,体内实验显示有显著的抗类风湿性关节炎和银屑病等活性[1617];其生物合成基因簇中ste1编码蛋白Ste1,与天蓝色链霉菌中DasR的序列一致性为82%,可能具有与DasR相似的多效调控作用与调控模式[1819]。我们之前的研究证实[20],Ste1能够与分别位于ste1ste5 (编码半乳糖基转移酶)上游启动子区域的含有dre特征序列的片段promoter1和promoter3结合,说明Ste1 (DasR类蛋白)也参与胞外多糖生物合成的调控。近期,我们完成了胞外多糖依博素产生菌的全基因组测序[21],生物信息学分析发现在其基因组中存在大量dre特征结合序列,可能参与调控链霉菌初级代谢、次级代谢与形态分化、DNA复制和转座酶、转录和翻译等(表 1),部分基因与天蓝色链霉菌中已确证受DasR调控的基因高度同源;此外,一些全新的、与胞外多糖生物合成及DNA损伤修复的相关元件也正在分析确证中。

表 1. 链霉菌139中dre特征序列归类 Table 1. Classification of dre in Streptomyces sp. 139
Function Locus Matched sequence Position Homologous gene Gene name Reference
Primary metabolism (31)
PTS (2) F3L20_RS08195 GGTTGTCTAGACCAGT 40 sco5841 ptsH [22]
F3L20_RS10900 TCTTGTCTGGACCACA –131 sco1390–1391 crr-pts [22]
Amino-sugar metabolism (14) F3L20_RS12255 ACCGGCGTGGACCTCA –2 951 sco6013 chiH [11]
F3L20_RS05695 TGTGGTTTAGACCAAT –9 sco5236 nagB [23]
F3L20_RS10695 GATGGACTAGACCAGT –92 sco1429 chiD [11]
F3L20_RS05010 CCTGGTCGACACCACC –419
F3L20_RS21835 ACCGGTGTAGACCGCT –148
9 are not listed here including F3L20_RS13615, F3L20_RS21775, F3L20_RS05695, F3L20_RS05695, F3L20_RS14405, F3L20_RS15770, F3L20_RS09085, F3L20_RS24000, F3L20_RS03630.
ABC transporter (15) F3L20_RS12215 ACAGGTATAGTCCACT –436
F3L20_RS08285 GCCGGTGGAGACCAGC –253
F3L20_RS19540 ACCGGTGACCACCACC –93
12 are not listed here including F3L20_RS00275, F3L20_RS02960, F3L20_RS06515, F3L20_RS23860, F3L20_RS26780, F3L20_RS05055, F3L20_RS07510, F3L20_RS12560, F3L20_RS20495, F3L20_RS07685, F3L20_RS07860, F3L20_RS13795.
Secondary metabolism (2) F3L20_RS12480 CCTGGTGTTCACAAGC –428
F3L20_RS18840 ACCCGTCCACACCTCT –11
Development (6) F3L20_RS00150 ACTGGTCCAGACGCCA –331
F3L20_RS18075 TCCCGTGTACACCAGT 23
F3L20_RS19405 ACTGGTGGACACCGTT –351
3 are not listed here including F3L20_RS01690, F3L20_RS00685, F3L20_RS24680.
Transcription
and translation (18)
Transcriptional regulator (7) F3L20_RS11890 AATGGTTTAGACCAGC –274 sco5231 dasR [22]
F3L20_RS13300 CGCAGTCTAGACAAGT –5
F3L20_RS22085 GTTGGTGTAGACCAAT –64
4 are not listed here including F3L20_RS11680, F3L20_RS17605, F3L20_RS01990, F3L20_RS10690.
Ribosome (7) F3L20_RS10910 AGAGGTCTAGACCACC –431
F3L20_RS03475 TCCGGTGTTGACATCC 12
F3L20_RS02150 ACCGGTCAACTCCACA –110
4 are not listed here including F3L20_RS03150, F3L20_RS07770, F3L20_RS08895, F3L20_RS10920.
tRNA (3) F3L20_RS07000 GATGGTTTAGACCAGT –225 sco5550 [14]
F3L20_RS00865 ACCGGTCTAGACAACA –36
F3L20_RS03185 ACCGCTGAACACCAGT –200
Others (60) F3L20_RS00060 TGTGCTGTACGCAAGT –69
F3L20_RS00065 AGTGGTGTTCATCTGA –117
F3L20_RS00790 AGCGGTGTCGGCCACC –99
57 are not listed here including F3L20_RS03790, F3L20_RS03850, F3L20_RS04710, etc.

2 DasR在生长发育与次级代谢调节中的作用

“Das”意为“Deficient in aerial mycelium and spore formation”,在灰色链霉菌[24]和天蓝色链霉菌[22]的DasR缺陷株中观察到孢子形成受阻,由此得名。bld基因与链霉菌气生菌丝和孢子形成相关,bld缺陷株在培养基上表现为光秃表型,不能观察到气生菌丝和孢子(图 2A),因此dasR在发现之初,被认为是bld家族的一员。Rigali等[22]在天蓝色链霉菌研究中,发现dasR基因阻断突变株BAP29在葡萄糖作为唯一碳源的培养基上,不能产生气生菌丝和孢子。不同bld基因突变株在靠近培养时,可重建附近菌落气生菌丝的形成,且遵守一个互补级联顺序。bld基因突变株中的bldAbldBbldCbldF和野生型天蓝色链霉菌在靠近培养时能够诱导BAP29恢复形成气生菌丝,而bldDbldGbldHbldJbldK等则不能,BAP29也不能使bld基因突变株恢复形成气生菌丝。说明dasR基因不在bld信号互补级联中,DasR是调控链霉菌气生菌丝生长起始阶段的重要调节因子。本实验室[20]在链霉菌139中敲除ste1后也观察到菌落生长为光秃型,扫描电镜下观察到相似的菌丝形态变化和孢子产生减少的现象(图 2B)。

图 2 天蓝色链霉菌M145中敲除dasR[22]与链霉菌139敲除ste1的形态变化[20] Figure 2 Phenotype of S. coelicolor M145, BAP29, Streptomyces sp. 139 and Streptomyces sp. 139 D1. A: phenotype of S. coelicolor M145 and the dasR mutant BAP29; scanning electron micrographs of S. coelicolor M145 (above) and BAP29 (below). Bars: left and medium, 10 μm; right, 1 μm. B: phenotype of Streptomyces sp. 139 and the ste1 mutant Streptomyces sp. 139 D1; scanning electron micrographs of Streptomyces sp. 139 (above) and Streptomyces sp. 139 D1 (below). Bars: left, 5 μm; medium, 2 μm; right, 1 μm.

链霉菌次级代谢与其形态分化与营养状况密切相关,抗生素产生往往开始于气生菌丝生长期,此时营养菌丝体自溶降解使GlcNAc浓度升高,在高浓度GlcNAc的贫乏培养基中也可观察到抗生素合成增加[10]。GlcNAc及其代谢衍生物可影响DasR与基因结合进而发挥调控作用,DasR与链霉菌中许多已知的抗生素合成基因簇均有结合,如cpkredactcda等,其调节基因还包括所有与GlcNAc相关的分解代谢基因[25]。在链霉菌中,DasR结合次级代谢产物调控基因后,通常起负调控作用,敲除dasR后,突变株抗生素合成增加。如在轮枝链霉菌(Streptomyces verticillus)中,DasR缺陷突变株中目的产物博来霉素的产量相较于野生型有明显提高[26],在天蓝色链霉菌DasR缺陷突变株BAP29中观察到放线紫红素的产量明显提高[22]。少数情况下,DasR对抗生素产生起正调控作用:如在肉桂链霉菌(Streptomyces cinnamonensis)中,DasR能与途径特异性调控基因monRII和生物合成基因monAIXmonEmonT特异性结合,并提高这些基因的转录水平,从而促进莫能菌素的生物合成,对莫能菌素的产生起到正调控作用[27];Liao等[28]在红色糖多孢菌中敲除dasR后,红霉素生物合成基因簇表达虽未见显著差异,但其生物合成的饲养途径相关基因SACE_ 1456-1459与SACE_5368-5340的表达显著下调,说明dasR可促进红霉素生物合成过程中的前体供应,敲除dasR后因前体供应不足进而间接导致红霉素产量显著下降,一定程度上对红霉素生物合成也起到了正向调控作用。

3 DasR联系营养感应和初级代谢

链霉菌广泛分布于土壤中,土壤中复杂的营养环境和链霉菌的多细胞结构,使其拥有复杂的营养感知和代谢调控系统。GlcNAc与其多聚物壳多糖在土壤中极为丰富,是自然界中仅次于纤维素,含量最为丰富的有机质,来自节肢动物的外骨骼和丝状真菌的细胞壁是链霉菌重要的碳源,同时也可作氮源[1]。GlcNAc是连接DasR与初级代谢的重要物质。如图 3所示,土壤中的几丁质在酶的作用下分解成GlcNAc及其二聚体(GlcNAc)2,其中二聚体(GlcNAc)2主要由2种特殊的ABC转运体进行吸收利用:DasABC与NgcEFG,并在DasD的作用下变为单体GlcNAc,随后在NagK作用下磷酸化生成GlcNAc-6P[29];而胞外GlcNAc在链霉菌中主要通过PTS吸收,并磷酸化生成GlcNAc-6P。GlcNAc-6P在NagA作用下去乙酰化生成GlcN-6P[30],GlcNAc-6P和GlcN-6P均能作为效应分子与DasR结合,并降低DasR与目标基因的亲和力。Rigali等[22]发现与GlcNAc吸收相关的基因ptsHptsIcrr均受DasR调控,(GlcNAc)2的转运体合成基因簇dasABCngcEFG也受DasR调控,且这些调控可由GlcNAc代谢产物GlcN-6P与GlcNAc-6P解除抑制作用,由此形成完整的调节回路,DasR作为代谢调节因子,能够感知生存环境的营养状态,维持营养生长,直到生长环境营养缺少从而触发孢子形成。

图 3 链霉菌中DasR调控模式图 Figure 3 Model of DasR regulating primary and secondary metabolism in Streptomyces. The dashed line indicates the metabolic relationship, and the solid line indicates the regulatory relationship, in which the arrow indicates promotion and the blunt end indicates inhibition.

碳代谢是链霉菌初级代谢中的重要部分,磷酸烯醇丙酮酸羧激酶(phosphoenolpyruvate carboxykinase,PEPCK)是碳代谢中的关键酶,连接三羧酸循环与糖酵解过程,并且催化糖异生的第一步反应。在天蓝色链霉菌中,sRNA scr5239抑制PEPCK生成。Engel等[15]发现,DasR能够与其上游dre位点结合抑制其转录,使细胞内PEPCK水平升高,引起PEP水平升高,使得摄入GlcNAc增加,减弱DasR的抑制作用,形成反馈回路调节系统。说明DasR在中心碳代谢中发挥着重要作用。

除链霉菌外,在同属放线菌的红色糖多孢菌(Saccharopolyspora erythraea)的研究中发现,DasR抑制acsA1转录,此基因编码的乙酰辅酶A合成酶是红色糖多孢菌中碳代谢与氮代谢的关键酶,说明DasR在放线菌碳代谢和氮代谢调控网络中发挥枢纽作用[31],在链霉菌中也可能存在类似的调控作用。

4 展望

在天蓝色链霉菌[32]、变铅青链霉菌(Streptomyces lividans)[33]、灰色链霉菌[34]、阿维链霉菌(Streptomyces avermitilis)[35]公布的全基因组序列中,有约20个隐性次级代谢产物合成基因簇,其中大多数尚未探明是否是抗生素合成基因簇。常规实验室条件下,在富营养基质上的快速生长过程中,大多数基因簇无法表达,通过激活部分途径特异性调控基因和改变外环境营养状况可以激活部分沉默的次级代谢产物合成通路[3637]。DasR作为全局调控蛋白,调控多种途径特异性调控基因,并且能对环境营养信号做出响应,研究DasR的调控机制可能对激活隐性次级代谢产物合成基因簇具有重要意义。

本实验室[20]在链霉菌139中敲除ste1基因后,突变株表现出与dasR缺陷株相似的光秃表型,不能观察到气生菌丝和孢子的产生,并且胞外多糖依博素的产量得到提升。测序结果显示,ste1与天蓝色链霉菌和灰色链霉菌中的dasR的序列一致性分别为73%和75%。推测Ste1具有与DasR相似的全局调控作用,其调控胞外多糖生物合成的方式可能与DasR调控抗生素合成类似,并在形态分化和营养感应中发挥作用。本实验室已证实Ste1能与依博素合成基因簇中的ste1ste5上游启动子区域结合,首次将DasR调控蛋白与多糖生物合成联系起来,后续实验将继续阐明Ste1在链霉菌中与多糖合成相关的调节通路,完善链霉菌中次级代谢产物合成相关的调控网络,以此帮助我们从链霉菌中获得有应用价值的次级代谢产物。

References
[1] Urem M, Świątek-Połatyńska MA, Rigali S, Van Wezel GP. Intertwining nutrient-sensory networks and the control of antibiotic production in Streptomyces. Molecular Microbiology, 2016, 102(2): 183-195. DOI:10.1111/mmi.13464
[2] Santos-Beneit F, Rodríguez-García A, Martín JF. Overlapping binding of PhoP and AfsR to the promoter region of glnR in Streptomyces coelicolor. Microbiological Research, 2012, 167(9): 532-535. DOI:10.1016/j.micres.2012.02.010
[3] Martín JF, Liras P. The balance metabolism safety net: integration of stress signals by interacting transcriptional factors in Streptomyces and related actinobacteria. Frontiers in Microbiology, 2020, 10: 3120. DOI:10.3389/fmicb.2019.03120
[4] Van Der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, Van Wezel GP. Regulation of antibiotic production in actinobacteria: new perspectives from the post-genomic era. Natural Product Reports, 2018, 35(6): 575-604. DOI:10.1039/C8NP00012C
[5] Van Bergeijk DA, Terlouw BR, Medema MH, Van Wezel GP. Ecology and genomics of actinobacteria: new concepts for natural product discovery. Nature Reviews Microbiology, 2020, 18(10): 546-558. DOI:10.1038/s41579-020-0379-y
[6] Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M, Joris B, Titgemeyer F. Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Research, 2004, 32(11): 3418-3426. DOI:10.1093/nar/gkh673
[7] Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. Journal of Biological Chemistry, 2002, 277(15): 12507-12515. DOI:10.1074/jbc.M110968200
[8] Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA. Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLoS One, 2016, 11(6): e0157691. DOI:10.1371/journal.pone.0157691
[9] Tenconi E, Urem M, Świątek-Połatyńska MA, Titgemeyer F, Muller YA, Van Wezel GP, Rigali S. Multiple allosteric effectors control the affinity of DasR for its target sites. Biochemical and Biophysical Research Communications, 2015, 464(1): 324-329. DOI:10.1016/j.bbrc.2015.06.152
[10] Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, Van Wezel GP. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Reports, 2008, 9(7): 670-675. DOI:10.1038/embor.2008.83
[11] Colson S, Stephan J, Hertrich T, Saito A, Van Wezel GP, Titgemeyer F, Rigali S. Conserved Cis-acting elements upstream of genes composing the chitinolytic system of streptomycetes are DasR-responsive elements. Journal of Molecular Microbiology and Biotechnology, 2007, 12(1/2): 60-66.
[12] Nazari B, Kobayashi M, Saito A, Hassaninasab A, Miyashita K, Fujii T. Chitin-induced gene expression in secondary metabolic pathways of Streptomyces coelicolor A3(2) grown in soil. Applied and Environmental Microbiology, 2013, 79(2): 707-713. DOI:10.1128/AEM.02217-12
[13] Martín JF, Sola-Landa A, Santos-Beneit F, Fernández-Martínez LT, Prieto C, Rodríguez-García A. Cross-talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microbial Biotechnology, 2011, 4(2): 165-174. DOI:10.1111/j.1751-7915.2010.00235.x
[14] Świątek-Połatyńska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F, Smith CP, Rigali S, Van Wezel GP. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLoS One, 2015, 10(4): e0122479. DOI:10.1371/journal.pone.0122479
[15] Engel F, Ossipova E, Jakobsson PJ, Vockenhuber MP, Suess B. sRNA scr5239 involved in feedback loop regulation of Streptomyces coelicolor central metabolism. Frontiers in Microbiology, 2020, 10: 3121. DOI:10.3389/fmicb.2019.03121
[16] Guo WW, Xu FY, Zhuang ZC, Liu Z, Xie JM, Bai LP. Ebosin ameliorates psoriasis-like inflammation of mice via miR-155 targeting tnfaip3 on IL-17 pathway. Frontiers in Immunology, 2021, 12: 662362. DOI:10.3389/fimmu.2021.662362
[17] Zhang Y, Wang L, Bai L, Jiang R, Guo L, Wu J, Cheng G, Zhang R, Li Y. Effect of ebosin on modulating interleukin-1β-induced inflammatory responses in rat fibroblast-like synoviocytes. Cellular & Molecular Immunology, 2016, 13(5): 584-592.
[18] Wang LY, Li ST, Li Y. Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces. FEMS Microbiology Letters, 2003, 220(1): 21-27. DOI:10.1016/S0378-1097(03)00044-2
[19] Bai LP, Li Y. Study of DasRABC in Streptomyces. Microbiology China, 2010, 37(9): 1369-1373. (in Chinese)
白利平, 李元. 链霉菌调控蛋白DasRABC的研究进展. 微生物学通报, 2010, 37(9): 1369-1373.
[20] Bai LP, Qi XQ, Zhang Y, Yao C, Guo LH, Jiang R, Zhang R, Li Y. A new GntR family regulator Ste1 in Streptomyces sp. 139. Applied Microbiology and Biotechnology, 2013, 97(19): 8673-8682. DOI:10.1007/s00253-013-5076-6
[21] Ai LM, Geng MX, Ma M, Bai LP. Complete genome sequence of the ebosin-producing strain Streptomyces sp. 139. Microbiology Resource Announcements, 2019, 8(49): e01283-e01219.
[22] Rigali S, Nothaft H, Noens EEE, Schlicht M, Colson S, Müller M, Joris B, Koerten HK, Hopwood DA, Titgemeyer F, Van Wezel GP. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Molecular Microbiology, 2006, 61(5): 1237-1251. DOI:10.1111/j.1365-2958.2006.05319.x
[23] Świątek-Połatyńska MA, Tenconi E, Rigali S, Van Wezel GP. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. Journal of Bacteriology, 2012, 194(5): 1136-1144. DOI:10.1128/JB.06370-11
[24] Seo JW, Ohnishi Y, Hirata A, Horinouchi S. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. Journal of Bacteriology, 2002, 184(1): 91-103. DOI:10.1128/JB.184.1.91-103.2002
[25] Martín JF, Liras P. Cascades and networks of regulatory genes that control antibiotic biosynthesis. Sub-Cellular Biochemistry, 2012, 64: 115-138.
[26] Chen H, Cui JQ, Wang P, Wang X, Wen JP. Enhancement of bleomycin production in Streptomyces verticillus through global metabolic regulation of N-acetylglucosamine and assisted metabolic profiling analysis. Microbial Cell Factories, 2020, 19(1): 32. DOI:10.1186/s12934-020-01301-8
[27] Zhang Y, Lin CY, Li XM, Tang ZK, Qiao JJ, Zhao GR. DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis. Journal of Industrial Microbiology and Biotechnology, 2016, 43(12): 1681-1692. DOI:10.1007/s10295-016-1845-4
[28] Liao CH, Xu Y, Rigali S, Ye BC. DasR is a pleiotropic regulator required for antibiotic production, pigment biosynthesis, and morphological development in Saccharopolyspora erythraea. Applied Microbiology and Biotechnology, 2015, 99(23): 10215-10224. DOI:10.1007/s00253-015-6892-7
[29] Colson S, Van Wezel GP, Craig M, Noens EEE, Nothaft H, Mommaas AM, Titgemeyer F, Joris B, Rigali S. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. Microbiology, 2008, 154(2): 373-382. DOI:10.1099/mic.0.2007/011940-0
[30] Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ, Van Wezel GP, Titgemeyer F. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Molecular Microbiology, 2010, 75(5): 1133-1144. DOI:10.1111/j.1365-2958.2009.07020.x
[31] You D, Zhang BQ, Ye BC. GntR family regulator DasR controls acetate assimilation by directly repressing the acsA gene in Saccharopolyspora erythraea. Journal of Bacteriology, 2018, 200(13): e00685-e00617.
[32] Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature, 2002, 417(6885): 141-147. DOI:10.1038/417141a
[33] Cruz-Morales P, Vijgenboom E, Iruegas-Bocardo F, Girard G, Yáñez-Guerra LA, Ramos-Aboites HE, Pernodet JL, Anné J, Van Wezel GP, Barona-Gómez F. The genome sequence of Streptomyces lividans 66 reveals a novel tRNA-dependent peptide biosynthetic system within a metal-related genomic island. Genome Biology and Evolution, 2013, 5(6): 1165-1175. DOI:10.1093/gbe/evt082
[34] Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. Journal of Bacteriology, 2008, 190(11): 4050-4060. DOI:10.1128/JB.00204-08
[35] Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ōmura S. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nature Biotechnology, 2003, 21(5): 526-531. DOI:10.1038/nbt820
[36] Niu GQ, Chater KF, Tian YQ, Zhang JH, Tan HR. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiology Reviews, 2016, 40(4): 554-573. DOI:10.1093/femsre/fuw012
[37] Kalkreuter E, Pan GH, Cepeda AJ, Shen B. Targeting bacterial genomes for natural product discovery. Trends in Pharmacological Sciences, 2020, 41(1): 13-26. DOI:10.1016/j.tips.2019.11.002