微生物学报  2021, Vol. 61 Issue (8): 2236-2249   DOI: 10.13343/j.cnki.wsxb.20200582.
http://dx.doi.org/10.13343/j.cnki.wsxb.20200582
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

李淑红, 屈亮, 李素, 仇华吉. 2021
Shuhong Li, Liang Qu, Su Li, Hua-Ji Qiu. 2021
应激颗粒:细胞调控病毒感染的重要策略
Stress granules, an important strategy for cells to regulate viral infections
微生物学报, 61(8): 2236-2249
Acta Microbiologica Sinica, 61(8): 2236-2249

文章历史

收稿日期:2020-09-08
修回日期:2020-12-13
网络出版日期:2020-12-25
应激颗粒:细胞调控病毒感染的重要策略
李淑红 , 屈亮 , 李素 , 仇华吉     
中国农业科学院哈尔滨兽医研究所, 兽医生物技术国家重点实验室, 黑龙江 哈尔滨 150069
摘要:真核细胞受到热休克、氧化应激、营养缺乏或者病毒感染等外界压力的刺激下会诱导一系列的应答反应,如形成应激颗粒(stress granule,SG),从而使细胞能更好地适应环境压力。SG作为胞浆中翻译起始复合物的聚集产物,在细胞的基因表达和稳态中发挥着重要的作用。病毒感染是诱导SG形成的条件之一,病毒侵入宿主细胞后会“借用”宿主的翻译机制完成自己的生命周期,宿主为了抵抗病毒的侵略而暂停翻译形成SG。本文对SG的产生及功能,SG与病毒的相互作用以及SG与病毒诱导的先天性免疫的关系等方面进行了综述,以期为进一步研究抗病毒策略提供方向。
关键词应激颗粒    病毒    翻译    先天性免疫    
Stress granules, an important strategy for cells to regulate viral infections
Shuhong Li , Liang Qu , Su Li , Hua-Ji Qiu     
State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, China
Abstract: Eukaryotic cells stimulated with external stresses such as heat shock, oxidative stress, nutrient deficiency or viral infections will induce a series of cellular responses, including stress granules (SGs), to facilitate the survival in the condition of environment stresses. As an aggregation product of translation initiation complex in cytoplasm, SGs play an important role in gene expression and homeostasis. Virus infection is one of the conditions that induces the production of SG. After the viruses invade the host cells, the host's translation system were hijacked by the viruses to fulfill its life cycle. Thus, host cells suspend the translation system and form the SGs to antagonize the invasion of viruses. This paper reviews the production and function of SG, the interaction between viruses and SGs, and the relationship between SGs and virus-induced innate immunity, in order to provide a direction for further research on antiviral targets.
Keywords: stress granules    virus    translation    innate immunity    

调节细胞质mRNA功能是控制细胞基因表达的关键。细胞质mRNA通过翻译表达蛋白质来行使功能,如果mRNA的翻译受到阻滞,细胞将不能进行正常的生命活动。当真核细胞受到外界环境的刺激(如热激、氧化反应、紫外线辐射、渗透压变化、内质网应激以及病毒感染等)时会在细胞质中形成致密的颗粒状聚集体,它是一种可逆的动态结构[1],称为应激颗粒(stress granule,SG)。

SG是动态的无膜包裹的细胞质结构[2],可以针对外界环境变化而快速调节自己。其成分主要包括翻译受到阻滞的mRNA,翻译起始因子(如eIF4E、eIF3等)、小的核糖体亚基和各种各样的mRNA结合蛋白的聚集体(例如Caprin1、HuR和TTP)、T细胞限制性细胞内抗原(T cell-restricted intracellular antigen 1,TIA-1)、Ras GTPase激活蛋白结合蛋白1(Ras GTPase-activating protein- binding protein 1,G3BP1)等[3]。SG包含48S复合体的大部分成分,但缺少eIF2,因此,SG被称为“48S复合体的异常聚集体”。G3BP1、Caprin1、TIA-1和TIA-1相关蛋白(TIAR)是SG形成的关键蛋白。其中,G3BP1和TIA-1是SG的标志蛋白。SG组成根据所诱导的压力刺激类型而变化。例如,在酿酒酵母中,热应激诱导的SG含有eIF3,而葡萄糖缺乏诱导的SG无eIF3[4-6]。病毒感染会产生独特类型的细胞应激反应,并经常诱导病毒型SG形成(简称V-SG),并且某些V-SG特异性地包含Sam68[7]

SG的产生方式主要有两种,eIF2的α亚基磷酸化是诱导SG形成最主要的方式(图 1),另一种方式是不依赖于eIF2α磷酸化。磷酸化的eIF2α可干扰eIF2-GTP-tRNAMet复合物的形成,导致大量翻译起始复合物保留在胞质中,并最终诱导SG的形成[8]。为了抑制病毒RNA的翻译或保护细胞免受不同的环境压力,哺乳动物细胞通过激活四种eIF2α激酶之一迅速停止翻译,分别是:蛋白激酶R(protein kinase R,PKR)、PKR样内质网激酶(PKR-like endoplasmic reticulum kinase,PERK)、一般性控制非抑制性蛋白2(general control non-repressed 2,GCN2)、血红素调节抑制剂激酶(heme-regulated inhibitor kinase,HRI)。这4种激酶在不同环境应激的条件下被激活,导致eIF2α磷酸化。例如,病毒感染过程中双链RNA(dsRNA)的存在会激活PKR,并造成内质网(ER)中未折叠蛋白的积累,即ER应激,且由此产生的压力会激活PERK[2],而氨基酸缺乏激活GCN2,氧化应激激活HRI。

图 1 依赖eIF2α磷酸化形成SG Figure 1 SG induction in an eIF2α phosphorylation dependant manner. After separation of eIF2 and eIF2B, it forms a ternary complex eIF2-GTP-tRNAMet with tRNAMet. Then the complex binds to mRNA, 40S, and 60S ribosomes and participates in the process of translation initiation. Under different external stimulus conditions, the four kinases can be activated, which induces phosphorylation of the α subunit of eIF2 and prevents it from being separated from eIF2B. Subsequently, the translation initiation is blocked, and the mRNA and some proteins involved in the translation process are aggregated to form stress granules. Among these conditions, the dsRNA or ER stress during virus infection will activate PKR and PERK, induce phosphorylation of eIF2α, and results in the formation of SG.

另一种方式是不依赖于eIF2α磷酸化(图 2),但需要破坏eIF4F复合物,如干扰RNA解旋酶eIF4E活性,以抑制其与eIF4G的相互作用。许多病毒需要mTOR超活化才能复制,而其他病毒抑制mTOR[9]

图 2 不依赖于eIF2α磷酸化形成SG Figure 2 SG induction in an eIF2α phosphorylation independant manner. Inhibition of mTORC activity induced by viral infection or drug stimulation can inhibit the phosphorylation of 4EBPs (eIF4E-binding proteins). 4EBPs share the same amino acid sequence at the N-terminus with eIF4G, which can competitively inhibit the interaction between elF4G and elF4E. The inhibition prevents the formation of eIF4F complexes, interferes with the binding of ribosomes to mRNA, and inhibits translation initiation, thus results in the SG production.

细胞经常暴露在具有潜在波动的不利环境条件下,SG的形成使细胞能够适应不同的环境变化,并为重要的细胞成分提供保护。SG可以响应细胞压力的信号转导并且具有保护功能。在整个应激过程中,SG将mRNA和蛋白质进行临时存储并保护二者免受蛋白酶体的自噬和降解,从而允许细胞从应激中恢复后迅速重新启动翻译并激活其他信号通路。

研究显示,SG影响mRNA的翻译和稳定性,并与细胞凋亡和核内事件有关[10]。另外,病毒感染细胞会导致细胞发生一系列生理变化,影响其正常生命活动的有序进行,而这种影响可能是通过形成SG引起的。SG的功能也因病毒种类和宿主细胞而有所差异[11-12]。本文将对SG以及其在病毒感染过程中发挥的作用进行综述,以期为病毒性疾病预防和治疗提供思路。

1 应激颗粒对病毒感染的影响

细胞质中的SG是蛋白质和RNA的复合物,是包括病毒感染在内多种环境应激条件下形成的[13],所包含的成分也因条件不同而有差异。病毒的特征在于能够以有利于其自身复制和传播的方式阻碍宿主细胞生长。已有文献报道多种病毒感染细胞都会产生SG,阻滞蛋白的翻译过程,由于病毒依赖于细胞翻译机制进行蛋白质合成,在影响细胞蛋白表达的同时,也会阻碍病毒在细胞内的复制。研究显示,为了逃避宿主细胞的抵抗作用,病毒进化出了各种策略来破坏SG的形成并促进病毒复制[14-15]。大多数病毒感染细胞形成SG是通过PKR激酶的激活使eIF2α磷酸化导致的。SG作为细胞应激反应的下游参与者,它自身的成分可能在病毒复制过程中发挥作用,并且可能是细胞对感染病毒引起先天免疫反应的推动者。实际上,近年来的研究表明,许多病毒会在受感染的细胞中诱导或调节SG的形成。

事实上,某些病毒会在感染初期诱导SG,但是,大多数病毒通常会在感染周期的某个时间段抑制SG的形成,当病毒基因表达水平较高时,SG共存于病毒感染的细胞中,也有一些病毒可以利用SG来帮助自身的复制,所以病毒与SG之间的相互作用关系值得进一步探究。

1.1 RNA病毒与SG

病毒蛋白质初步合成后,正链RNA病毒将单个基因组从募集核糖体的状态转换为翻译抑制状态,从模板上清除核糖体以便于RNA的复制[16]。因此,大量的RNA调节蛋白与病毒的复制有关。

甲病毒(alphavirus)的非结构蛋白与G3BP1相互作用形成复合体。G3BP1可以进入包含病毒聚合酶nsp3[17-20]、nsp2[21]和nsp4[17]的复合物中。塞姆利基森林病毒(SFV)在SG形成的初始阶段后期抑制SG的形成,SFV nsp3将G3BP1整合到病毒复制复合物中,同时抑制SG的形成[22]。类似地,基孔肯雅病毒(CHIKV)的nsp3也通过将G3BP1募集到细胞质聚集处来抑制SG[19]。起始密码子AUG附近的病毒翻译增强子可使SFV RNA逃离eIF2α磷酸化诱导的翻译阻滞,具有此序列的病毒RNA的有效翻译也有助于在感染过程中分解SG[22]。破坏nsp3与G3BP1相互作用会减少病毒复制子和病毒的复制[19],这也说明SG的形成可抑制病毒的复制。

鉴于SG的特点是翻译停滞,因此很容易将抗病毒功能归因于SG。与上述观点有所不同,Lindquist等研究表明,在感染细胞内形成SG时,呼吸道合胞体病毒(respiratory syncytial virus,RSV)复制得到增强,而不是被抑制[11]。此外,G3BP被认为是对受感染细胞内的RSV复制影响重大的SG形成的关键分子,而HuR尽管位于病毒复制复合体中,却似乎没有这种作用。需要强调的是,Lindquist等证实,绝大多数RSV复制发生在病毒包涵体中,而不是在SG中,产生应激反应的细胞的总体状态增强RSV复制[11]。包涵体是病毒感染宿主细胞后在细胞内所形成的蛋白质性质的小体。多数病毒的包涵体由病毒粒子组成,少数包涵体是细胞对病毒反应的产物,一个包涵体含有一到数个病毒粒子,也有不含病毒粒子的。但关于细胞的应激反应会增强RSV复制的机制仍有待进一步研究。

非致病性哺乳动物正呼肠孤病毒(mammalian orthoreovirus,MRV)是呼肠孤病毒科的成员,为分节段型dsRNA病毒。研究表明,MRV感染可诱导eIF2的α亚单位磷酸化[23-26],进而阻止eIF2-GTP-tRNAMet的形成来抑制宿主细胞的翻译起始[27-28],在感染早期诱导SG的形成。同时早期形成的SG对病毒的复制也有促进作用[29]。在SG中含有未翻译的mRNA,MRV mRNA与细胞mRNA的不同之处在于,它们不包含3'poly(A)尾巴,但在其5'端有m7GpppN帽子结构。用紫外线灭活后的MRV可诱导产生更多的SG,这表明SG的形成可能是病毒侵入时发生的。而在MRV感染的晚期,虽然elF2α的磷酸化仍然保持着较高的水平,但SG的数量比早期降低了[30]。还有研究报道,在敲除了SG标志蛋白G3BP1的细胞中,MRV的复制效率明显提高[31]

丙型肝炎病毒(hepatitis C virus,HCV)可以诱导SG的形成[24]。HCV感染所产生的SG含有ataxin-2(ATX2)成分,其核心蛋白与SG成分如G3BP1或PABP1存在共定位现象。研究发现,在病毒感染后期SG中的个别蛋白可与HCV的核心蛋白共定位[32],表明HCV感染可以劫持SG的成分到自己的“生产工厂”。HCV可以通过劫持“生产工厂”周围的成分来抑制热应激或亚砷酸盐(nrsenite,Ars)刺激下SG的形成。蛋白质组学分析表明,G3BP1、PABP1和DDX1是HCV 3'-UTR RNA结合蛋白,还有文献报道了G3BP1与HCV NS5B相关,并且G3BP1是HCV RNA复制所必需的[33]。ATX2和PABP1是HCV复制所必需的,说明SG成分在HCV复制周期中发挥着重要的作用。

脊髓灰质炎病毒(poliovirus,PV)是一种小的正链RNA病毒,该病毒通过分解eIF4G和PABP抑制宿主蛋白合成,也诱导了SG的形成但没有明显的eIF2α磷酸化[34]。White等提出了一种假设:PV诱导SG形成,但随后由于G3BP1的分解而导致现有SG解体,并阻碍了由于外界压力造成新SG的形成[35]。感染诱导了包含宿主mRNA和TIA-1的SG的形成,并且SG在后期不会分解,表明PV诱导SG的稳定形成。G3BP的过表达,有利于SG的形成,并降低病毒滴度[35],表明SG可能对病毒复制发挥负调控作用。Borghese等研究表明,另一种小核糖核酸病毒,泰勒氏小鼠脑脊髓炎病毒(TMEV),它的感染可诱导SG形成,但L蛋白在感染过程中的表达足以抑制Ars引起的氧化应激,进而导致内质网应激所诱导的SG形成[36]

先前报道,在Ars处理后在细胞中形成的SG一定包含TIA-1/TIAR,并且这两种蛋白在黄病毒感染的细胞中都与病毒非结构蛋白和复制复合物共定位。虽然西尼罗河病毒(West Nile virus,WNV)、登革热病毒(Dengue virus,DENV)和日本脑炎病毒(Japanese encephalitis virus,JEV)都属于黄病毒属,但每种病毒都采用独特的机制来阻止SG装配。黄病毒科成员寨卡病毒(ZIKA virus,ZIKV)、WNV和JEV感染细胞时可激活PKR[37-39]。研究表明,WNV还通过上调和激活调节抗氧化反应的关键转录因子来抑制SG的形成,并指出其基因组通过与SG的TIA-1和TIAR成分相互作用,导致感染细胞中病毒复制的减少。DENV也通过与TIA-1/TIAR的相互作用来影响SG的形成,DENV感染期间p38-Mnk1信号传导和帽结合蛋白eIF4E的磷酸化受到影响,从而通过不依赖eIF2α磷酸化的机制抑制SG的形成[40]。据报道,它通过与SG成分的G3BP蛋白结合而影响遗传物质的翻译或RNA的复制。G3BP1、G3BP2和Caprin1促进干扰素刺激基因(ISG)的翻译以限制DENV的感染[41-42],JEV通过将Caprin1与病毒衣壳蛋白共定位来抑制SG的装配[43]

瘟病毒属(pestivirus)是黄病毒科成员,其可引起重要的家畜疾病,包括牛病毒性腹泻病毒(BVDV)、猪瘟病毒(CSFV)和边界病病毒(BDV)[44]。研究表明BVDV感染可抑制Ars处理产生的SG,病毒的非结构蛋白Npro与SG成分之一YBX1相互作用。此外,Npro与许多被认为与YBX1相互作用的蛋白质相互作用,包括IGFBP2、DDX3、ILF2和RHA (DXH9)。研究显示,瘟病毒本身可抑制氧化应激诱导的SG形成,以阻止细胞蛋白质的合成并促进病毒蛋白的合成[45]

猪繁殖与呼吸综合征病毒(porcine reproductive and respiratory syndrome virus,PRRSV) 为动脉炎病毒科动脉炎病毒属的成员,是一种有囊膜的单股正链RNA病毒,可以在感染后的后期诱导SG的形成[46-47],其通过PERK激酶促进eIF2α磷酸化产生SG。SG标志物G3BP1与病毒复制复合物(viral replication complexes,VRCs)位置接近但未发生共定位[46],并且证明了在PRRSV感染期间,其诱导产生的SG在调节宿主细胞翻译速率方面发挥重要作用,但对病毒复制并无影响。

大多数报道是关于动物病毒与SG之间的相互作用,只有少数研究解析了植物病毒和SG之间的相互作用[48-50]。例如,已有研究证明一种保守的植物SG成分与来自纳米病毒豌豆坏死黄矮病毒和苘麻花叶病毒的核穿梭蛋白相互作用[50-51]。马铃薯X病毒(potato virus X,PVX)为马铃薯X病毒属(potexvirus)模式成员,是由一条正链RNA组成的线性病毒。研究者们根据PVX感染的细胞中植物细胞SG标志拟南芥UBP1b(AtUBP1b)的定位情况,发现PVX感染不能产生SG,并且对缺氧条件下SG的形成有抑制作用,这表明PVX可能已经进化出一种抑制SG形成的机制,以抵消植物的应激反应,从而建立有效的感染,该研究为病毒适应植物应激反应提供了一个潜在的视角[52]

1.2 DNA病毒与SG

与RNA病毒不同的是,DNA病毒感染过程中SG的形成调节知之甚少。据报道,人类巨细胞病毒(HCMV)感染改变了未折叠蛋白反应(UPR)并激活了PERK,但会限制eIF2α的磷酸化以维持翻译,HCMV的pTRS1和pIRS1可拮抗PKR促进病毒复制[53-54]。卡波西肉瘤相关疱疹病毒(KSHV)ORF57与PKR和PKR激活蛋白(PACT)相互作用,分别抑制PKR结合dsRNA并阻止PKR通路中的PACT-PKR相互作用[55-56]

疱疹病毒科(Herpesviridae)和痘病毒科(Poxviridae)是一类具有囊膜的dsDNA病毒。单纯疱疹病毒1型(herpes simplex virus type 1,HSV-1)可通过自身的VHS(virion host shutoff)蛋白以及其他蛋白影响elF2α激酶活性,从而影响宿主蛋白质的合成,随后诱导细胞RNA的降解[57]。HSV-1、VHS和US11蛋白在阻断PKR活化中起关键作用[58]。Smiley等还证明,感染VHS缺陷的HSV-1会触发SG的形成,而PKR在缺失VHS的情况下对于SG的形成是必不可少的[59]。携带UL41突变的HSV-1的细胞在感染后期积累SG[60-61]。Finnen等已证实,单纯疱疹病毒2型(HSV-2)感染会影响氧化应激引起的SG聚集。该研究还证明了SG的解体是由VHS介导的,因为野生型HSV-2感染的细胞可以对抗外界刺激诱导的SG,而那些感染缺乏相关VHS内切酶的突变体的细胞则相反[61]。从SG中移除RNA促进了其自身分解,完整的RNA对维持SG结构至关重要。缺失VHS的HSV-2不影响Ars诱导的SG的形成,可见其SG的形成是在感染后期发生的[61]。有研究表明,伪狂犬病病毒(pseudorabies virus,PRV)感染以eIF2α依赖的方式发挥了其抑制SG形成的功能,并且介导的SG抑制是一种普遍现象而不是细胞类型特异性的。PRV感染早期会诱导PKR活化,但在感染6 h后,磷酸化PKR的数量随着感染时间的延长而减少,表明PRV晚期蛋白可能主动阻断PKR的激活从而抑制eIF2α的磷酸化。已经证明,GADD34可以与PP1相互作用来增强eIF2α的去磷酸化,eIF2α的去磷酸化可以被病毒感染所调节[62],而阻断PP1和GADD34之间的相互作用可以部分恢复eIF2α磷酸化并抑制PRV的复制[63]

痘病毒科(Poxviridae)是双链DNA病毒家族,人类天花、猴痘和牛痘都是由痘病毒感染引起的。关于痘病毒基因表达的大部分信息来自对痘苗病毒(VACV)的研究。VACV是痘病毒科的一员,与其他DNA病毒的不同之处在于它们只在细胞质中复制,病毒颗粒的基因组复制和组装发生在通常被称为DNA工厂的细胞质区域[64]。感染后4 h以内,许多DNA工厂被粗面内质网包围,在病毒蛋白质合成和病毒组装的中后期开始分散。VACV将关键的翻译启动因子,如G3BP1、Caprin-1、eIF4E、PABP和eIF4G招募到细胞质病毒DNA工厂内。VACV在自身复制的不同阶段利用不同SG蛋白质来促进其完成每一个复制周期。两种细胞蛋白G3BP和Caprin-1(P137)已经被证明是一种异源二聚体,这两种蛋白是VACV基因体外转录所必需的[65];而病毒翻译的起始依赖eIF4E/eIF4G/ PABP,以上研究都说明了SG的组分对于VACV的转录和翻译都有促进作用。最近的一项研究表明,RNA颗粒是病毒DNA工厂中未翻译的mRNA积累的结果,并且TIA-1可能不是颗粒形成和抗痘病毒所必需的。某些VACV突变体感染细胞会形成含有TIA-1等成分的颗粒,由于其具有抑制病毒复制的功能,所以称之为抗病毒应激颗粒(antiviral stress granule,avSG)[66]。某种程度上说SG的存在既帮助病毒的增殖又帮助宿主的生长。

不管是RNA病毒还是DNA病毒,都可能在感染期间诱导宿主细胞产生SG。在病毒的整个复制周期内,其对SG都发挥着不同的作用,同样的是,SG也会对病毒产生不同的作用,从而完成自身的功能。

2 应激颗粒与病毒诱导的先天性免疫

许多研究都指出,病毒感染引起的SG的形成,与抗病毒先天性免疫存在着千丝万缕的联系。SG形成不仅抑制宿主翻译机制,而且严重干扰病毒翻译,这进一步证明了它们的抗病毒作用。宿主在对抗来自病毒感染的压力时,会利用各种方式来保护自己,其中就包括抗病毒先天性免疫和产生SG,而其中SG所含成分,就可能在先天性免疫中发挥着重要作用。抑制先天免疫机制的病毒蛋白质被隔离(例如,甲型流感病毒NS1)可以进一步增强抗病毒反应并阻断病毒复制[67]

干扰素(IFN)系统在抗病毒天然免疫反应中发挥核心作用。病毒的病原相关分子模式(PAMP)被细胞中的模式识别受体所识别,通过多种信号通路触发IFN的转录激活。而SG通过IFN发挥其抗病毒的作用,其与抗病毒先天免疫的关系如图 3所示。通过I型干扰素受体的信号传导导致由ISG编码的蛋白质的产生,并在感染和未感染细胞中建立抗病毒状态[68]。近年来,一些传感器和参与这些信号通路的元件被发现定位于SG,并提出了SG为PAMP识别提供动态平台的可能性。识别长双链RNA的RIG-I样受体MDA5和感应胞质内的5'-三磷酸单链RNA和较短的dsRNA的RIG-I都定位于SG中[69-71]。2’-5’-寡腺苷酸合成酶(OASs)是干扰素诱导的抗病毒酶,人类OAS家族由4个成员组成,即OAS1至OAS3和OAS样蛋白(OASL)。研究表明,猪源OASL与MDA5相互作用,可进一步增强MDA5介导的I型干扰素信号通路[72]。泛素连接酶TRIM25,也被招募入SG[73],并且是完全激活RIG-I所必需的。这些传感器与定位在线粒体膜上的MAVS相互作用,进而激活TBK1(TANK结合激酶1)和一个信号级联,导致I型(α和β)干扰素的产生[74]。其中RIG-I传感器可识别病毒RNA[75-76],从而诱导IFN产生并分泌,IFN可以通过自分泌和旁分泌方式发挥作用。与IFN受体结合后,触发信号传导,包括JAK-STAT途径,该途径诱导多种ISG的形成,其中一些编码具有抗病毒活性的蛋白质。许多ISG编码的蛋白质被募集到应激颗粒中,一些已被证明能调节应激颗粒的动力学[77]。ISG中有两种酶是dsRNA的结合蛋白,一种是由dsRNA调节的蛋白激酶PKR,另一种是作用于dsRNA的腺苷脱氨酶ADAR1[76-78]

图 3 应激颗粒与抗病毒先天免疫的关系 Figure 3 Relationship between SGs and antiviral innate immunity. After the virus invades the host cells, the double-stranded RNA (dsRNA) of virus activates PKR kinase, which leads to phosphorylation of eIF2α and production of SGs. SG contains RIG-I-like receptors MDA5 and RIG-I (DDX58), which can interact with MAVS on the mitochondrial membrane and activate the interferon (IFN) signaling pathway to promote the production of IFN. After binding with IFN receptors on the cellular membrane, the interferon-stimulating genes (including PKR kinase) can be induced by JAK-STAT pathway to inhibit viral RNA replication.

PKR激酶是一种IFN诱导型激酶,在dsRNA或具有双链特性的ssRNA结合后被激活或拮抗。PKR通常具有促凋亡和抗病毒活性。与存在于PKR N端区域中的重复域结合的dsRNA可以通过自身磷酸化(包括第446位的苏氨酸)、二聚化和由存在于PKR蛋白C端区域中的激酶亚域催化的底物磷酸化来激活,表明PKR底物eIF2α磷酸化后会改变细胞中的翻译模式,从而导致细胞凋亡。

在两种RNA病毒(即甲型流感病毒和新城疫病毒)感染期间SG的形成受到干扰,并且可抑制RIG-I下游IFN的诱导,从而推断出SG在介导PAMP识别方面具有关键作用[68]。然而,在脑心肌炎病毒感染的研究中却提供了相反的结果,IFN-β水平降低或不受SG干扰的影响[69, 79]。dsRNA激活的激酶PKR通常是病毒感染过程中负责翻译抑制和SG形成的eIF2α激酶,它的激活可抑制被感染细胞蛋白质合成的作用。在一定的应激条件下,PKR也聚集在SG处,并通过这种定位进一步激活其自身活性[80-81]。过表达G3BP1可促进SG形成进而诱导PKR激活[82],但SG形成和PKR激活之间的相关性是否发生在正常SG形成期间并影响PKR在感染期间的抗病毒活性尚不清楚。当OASs结合dsRNA时,另一种损害蛋白质合成的防御机制被激活。它们随后的激活导致2’-5’-寡腺苷酸的产生,进而激活细胞内切核糖核酸酶L,该酶同时切割mRNA和rRNA[83]。已经证明,OAS2和RNase L定位于SG[70, 80],但是这种定位的功能尚不清楚。

总之,病毒感染产生的SG可以参与到抗病毒先天免疫反应过程中,以利于宿主细胞抵抗病毒的感染。

3 结语和展望

在病毒感染引起的细胞各类应答反应中,应激反应的研究对我们来说并不多。虽然目前已经有关于各类病毒与SG相互作用的报道,但是其分子机制仍然不清楚,并且研究不够细致。宿主感染病毒后会诱导SG生成来抑制病毒的复制,而病毒在与宿主的对抗过程中也进化出逃逸SG抑制的措施,甚至将其利用于自身复制的相关机制。

病毒感染可以引起eIF2α磷酸化,但eIF2α磷酸化最终不一定导致SG的形成,其他因素也能诱导形成SG。不同的病毒感染细胞,对SG的影响不同。一些病毒(如RSV)感染形成的SG能够增强其复制;而有些病毒(如MRV)感染形成的SG会抑制其复制。那些抑制病毒复制的SG在形成后期会被病毒攻击,导致SG不再产生甚至解体。SG的组成蛋白对病毒复制也会产生影响,如在敲除了G3BP1的细胞中,MRV的复制效率明显提高。总之,宿主细胞在受到病毒感染时,可以通过对SG形成的调控来保护自己,同时病毒也针对SG来做出有利于自身的选择。

目前已知SG与先天性免疫相互关联,因此,在对于SG的研究中可能会发现一些在抗病毒治疗中具有价值的靶点。用药物诱导,经PKR激活elF2α磷酸化生成的SG,有望控制病毒感染。例如TIA-1及其同源物TIAR是一类与肿瘤坏死因子α和基质金属蛋白酶-13的3'端非编码区序列特异结合而发挥翻译沉默作用的蛋白,这两种蛋白都具有3个RNA识别基序,它们与富有U和A+U的RNA具有高亲和力结合[84-86]。持续的TIA1或TIAR表达抑制细胞增殖,有利于细胞周期阻滞在G1/S,并通过缓慢的caspase依赖的凋亡和晚期自噬触发细胞死亡[87]。所以,我们也可以诱导SG标志物TIA-1的聚集来抑制病毒的扩散。体外研究表明,eIF4A解旋酶抑制剂具有抗病毒作用:马尿醇抑制杯状病毒,pateamine A抑制甲型流感病毒和巨细胞病毒的复制[88],西维斯特罗有效地抑制埃博拉病毒的复制[89]。SG的形成是否有助于这些化合物的抗病毒作用尚不清楚,很可能是对病毒蛋白合成的抑制足以扰乱复制。药物抑制翻译作为一种抗病毒策略,预计将受到未感染细胞的细胞毒性效应的限制。重要的是,eIF4A解旋酶抑制剂已经被证明在不产生显著细胞毒性的浓度下是抗病毒的,因为它只抑制宿主蛋白合成的一小部分。针对不同病毒与SG的相互作用,开发相关的抗病毒制剂对抗病毒的感染。

References
[1] Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. Journal of Cell Biology, 2005, 169(6): 871-884. DOI:10.1083/jcb.200502088
[2] Ivanov P, Kedersha N, Anderson P. Stress granules and processing bodies in translational control. Cold Spring Harbor Perspectives in Biology, 2019, 11(5): a032813. DOI:10.1101/cshperspect.a032813
[3] Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. Journal of Cell Biology, 2016, 215(3): 313-323. DOI:10.1083/jcb.201609081
[4] Buchan JR, Muhlrad D, Parker R. P bodies promote stress granule assembly in Saccharomyces cerevisiae. Journal of Cell Biology, 2008, 183(3): 441-455. DOI:10.1083/jcb.200807043
[5] Groušl T, Ivanov P, Frydlová I, Vašicová P, Janda F, Vojtová J, Malínská K, Malcová I, Nováková L, Janošková D, Valášek L, Hašek J. Robust heat shock induces eIF2α-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. Journal of Cell Science, 2009, 122(Pt 12): 2078-2088.
[6] Hoyle NP, Castelli LM, Campbell SG, Holmes LEA, Ashe MP. Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. Journal of Cell Biology, 2007, 179(1): 65-74. DOI:10.1083/jcb.200707010
[7] Piotrowska J, Hansen SJ, Park N, Jamka K, Sarnow P, Gustin KE. Stable formation of compositionally unique stress granules in virus-infected cells. Journal of Virology, 2010, 84(7): 3654-3665. DOI:10.1128/JVI.01320-09
[8] Nakagawa K, Narayanan K, Wada M, Makino S. Inhibition of stress granule formation by Middle East respiratory syndrome coronavirus 4a accessory protein facilitates viral translation, leading to efficient virus replication. Journal of Virology, 2018, 92(20): e00902-18.
[9] Le Sage V, Cinti A, Amorim R, Mouland AJ. Adapting the stress response: viral subversion of the mTOR signaling pathway. Viruses, 2016, 8(6): 152. DOI:10.3390/v8060152
[10] Buchan JR, Parker R. Eukaryotic stress granules: the ins and outs of translation. Molecular Cell, 2009, 36(6): 932-941. DOI:10.1016/j.molcel.2009.11.020
[11] Lindquist ME, Lifland AW, Utley TJ, Santangelo PJ, Crowe Jr JE. Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. Journal of Virology, 2010, 84(23): 12274-12284. DOI:10.1128/JVI.00260-10
[12] Sun YJ, Dong LN, Yu SQ, Wang XX, Zheng H, Zhang P, Meng CC, Zhan Y, Tan L, Song CP, Qiu XS, Wang GJ, Liao Y, Ding C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation. FASEB Journal, 2017, 31(4): 1337-1353.
[13] Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P. Hydrogen peroxide induces stress granule formation independent of eIF2α phosphorylation. Biochemical and Biophysical Research Communications, 2012, 423(4): 763-769. DOI:10.1016/j.bbrc.2012.06.033
[14] Basu M, Courtney SC, Brinton MA. Arsenite-induced stress granule formation is inhibited by elevated levels of reduced glutathione in West Nile virus-infected cells. PLoS Pathogens, 2017, 13(2): e1006240. DOI:10.1371/journal.ppat.1006240
[15] Yang XD, Hu ZL, Fan SS, Zhang Q, Zhong Y, Guo D, Qin YL, Chen MZ. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathogens, 2018, 14(2): e1006901. DOI:10.1371/journal.ppat.1006901
[16] Lloyd RE. Regulation of stress granules and P-bodies during RNA virus infection. Wiley Interdisciplinary Reviews: RNA, 2013, 4(3): 317-331. DOI:10.1002/wrna.1162
[17] Cristea IM, Rozjabek H, Molloy KR, Karki S, White LL, Rice CM, Rout MP, Chait BT, MacDonald MR. Host factors associated with the Sindbis virus RNA-dependent RNA polymerase: role for G3BP1 and G3BP2 in virus replication. Journal of Virology, 2010, 84(13): 6720-6732. DOI:10.1128/JVI.01983-09
[18] Frolova E, Gorchakov R, Garmashova N, Atasheva S, Vergara LA, Frolov I. Formation of nsP3-specific protein complexes during Sindbis virus replication. Journal of Virology, 2006, 80(8): 4122-4134. DOI:10.1128/JVI.80.8.4122-4134.2006
[19] Fros JJ, Domeradzka NE, Baggen J, Geertsema C, Flipse J, Vlak JM, Pijlman GP. Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci. Journal of Virology, 2012, 86(19): 10873-10879. DOI:10.1128/JVI.01506-12
[20] Gorchakov R, Garmashova N, Frolova E, Frolov I. Different types of nsP3-containing protein complexes in Sindbis virus-infected cells. Journal of Virology, 2008, 82(20): 10088-10101. DOI:10.1128/JVI.01011-08
[21] Atasheva S, Gorchakov R, English R, Frolov I, Frolova E. Development of Sindbis viruses encoding nsP2/GFP chimeric proteins and their application for studying nsP2 functioning. Journal of Virology, 2007, 81(10): 5046-5057. DOI:10.1128/JVI.02746-06
[22] Panas MD, Varjak M, Lulla A, Eng KE, Merits A, Hedestam GBK, McInerney GM. Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection. Molecular Biology of the Cell, 2012, 23(24): 4701-4712. DOI:10.1091/mbc.e12-08-0619
[23] Montero H, Rojas M, Arias CF, López S. Rotavirus infection induces the phosphorylation of eIF2α but prevents the formation of stress granules. Journal of Virology, 2008, 82(3): 1496-1504. DOI:10.1128/JVI.01779-07
[24] Samuel CE, Duncan R, Knutson GS, Hershey JW. Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2α in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. Journal of Biological Chemistry, 1984, 259(21): 13451-13457. DOI:10.1016/S0021-9258(18)90715-5
[25] Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA. Reovirus induces and benefits from an integrated cellular stress response. Journal of Virology, 2006, 80(4): 2019-2033. DOI:10.1128/JVI.80.4.2019-2033.2006
[26] Yue ZY, Shatkin AJ. Double-stranded RNA-dependent protein kinase (PKR) is regulated by reovirus structural proteins. Virology, 1997, 234(2): 364-371. DOI:10.1006/viro.1997.8664
[27] Pain VM. Initiation of protein synthesis in eukaryotic cells. European Journal of Biochemistry, 1996, 236(3): 747-771. DOI:10.1111/j.1432-1033.1996.00747.x
[28] Preiss T, Hentze MW. Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays, 2003, 25(12): 1201-1211. DOI:10.1002/bies.10362
[29] Qin QS, Hastings C, Miller CL. Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. Journal of Virology, 2009, 83(21): 11090-11101. DOI:10.1128/JVI.01239-09
[30] Qin QS, Carroll K, Hastings C, Miller CL. Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2α phosphorylation and PKR. Journal of Virology, 2011, 85(17): 8798-8810. DOI:10.1128/JVI.01831-10
[31] Carroll K, Hastings C, Miller CL. Amino acids 78 and 79 of mammalian orthoreovirus protein μNS are necessary for stress granule localization, core protein λ2 interaction, and de novo virus replication. Virology, 2014, 448: 133-145. DOI:10.1016/j.virol.2013.10.009
[32] Ariumi Y, Kuroki M, Kushima Y, Osugi K, Hijikata M, Maki M, Ikeda M, Kato N. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. Journal of Virology, 2011, 85(14): 6882-6892. DOI:10.1128/JVI.02418-10
[33] Yi ZG, Fang CY, Pan TT, Wang JD, Yang PY, Yuan ZH. Subproteomic study of hepatitis C virus replicon reveals Ras-GTPase-activating protein binding protein 1 as potential HCV RC component. Biochemical and Biophysical Research Communications, 2006, 350(1): 174-178. DOI:10.1016/j.bbrc.2006.09.027
[34] Mazroui R, Sukarieh R, Bordeleau ME, Kaufman RJ, Northcote P, Tanaka J, Gallouzi I, Pelletier J. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Molecular Biology of the Cell, 2006, 17(10): 4212-4219. DOI:10.1091/mbc.e06-04-0318
[35] White JP, Cardenas AM, Marissen WE, Lloyd RE. Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host & Microbe, 2007, 2(5): 295-305.
[36] Borghese F, Michiels T. The leader protein of cardioviruses inhibits stress granule assembly. Journal of Virology, 2011, 85(18): 9614-9622. DOI:10.1128/JVI.00480-11
[37] Hou SM, Kumar A, Xu ZK, Airo AM, Stryapunina I, Wong CP, Branton W, Tchesnokov E, Götte M, Power C, Hobman PC. Zika virus hijacks stress granule proteins and modulates the host stress response. Journal of Virology, 2017, 91(16): e00474-17.
[38] Tu YC, Yu CY, Liang JJ, Lin EL, Liao CL, Lin YL. Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. Journal of Virology, 2012, 86(19): 10347-10358. DOI:10.1128/JVI.00525-12
[39] Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BRG, Silverman RH, Gale Jr M, Diamond MS. PKR and RNase L contribute to protection against lethal West Nile virus infection by controlling early viral spread in the periphery and replication in neurons. Journal of Virology, 2006, 80(14): 7009-7019. DOI:10.1128/JVI.00489-06
[40] Roth H, Magg V, Uch F, Mutz P, Klein P, Haneke K, Lohmann V, Bartenschlager R, Fackler OT, Locker N, Stoecklin G, Ruggieri A. Flavivirus infection uncouples translation suppression from cellular stress responses. mBio, 2017, 8(1): e02150-16.
[41] Bidet K, Dadlani D, Garcia-Blanco MA. G3BP1, G3BP2 and CAPRIN1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathogens, 2014, 10(7): e1004242. DOI:10.1371/journal.ppat.1004242
[42] Ward AM, Bidet K, Yinglin A, Ler SG, Hogue K, Blackstock W, Gunaratne J, Garcia-Blanco MA. Quantitative mass spectrometry of DENV-2 RNA-interacting proteins reveals that the DEAD-box RNA helicase DDX6 binds the DB1 and DB23' UTR structures. RNA Biology, 2011, 8(6): 1173-1186. DOI:10.4161/rna.8.6.17836
[43] Katoh H, Okamoto T, Fukuhara T, Kambara H, Morita E, Mori Y, Kamitani W, Matsuura Y. Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. Journal of Virology, 2013, 87(1): 489-502. DOI:10.1128/JVI.02186-12
[44] Peterhans E, Schweizer M. Pestiviruses: how to outmaneuver your hosts. Veterinary Microbiology, 2010, 142(1/2): 18-25.
[45] Jefferson M, Donaszi-Ivanov A, Pollen S, Dalmay T, Saalbach G, Powell PP. Host factors that interact with the pestivirus N-terminal protease, Npro, are components of the ribonucleoprotein complex. Journal of Virology, 2014, 88(18): 10340-10353. DOI:10.1128/JVI.00984-14
[46] Catanzaro N, Meng XJ. Porcine reproductive and respiratory syndrome virus (PRRSV)-induced stress granules are associated with viral replication complexes and suppression of host translation. Virus Research, 2019, 265: 47-56. DOI:10.1016/j.virusres.2019.02.016
[47] Zhou YR, Fang LR, Wang D, Cai KM, Chen HC, Xiao SB. Porcine reproductive and respiratory syndrome virus infection induces stress granule formation depending on protein kinase R-like endoplasmic reticulum kinase (PERK) in MARC-145 cells. Frontiers in Cellular and Infection Microbiology, 2017, 7: 111.
[48] Conti G, Zavallo D, Venturuzzi AL, Rodriguez MC, Crespi M, Asurmendi S. TMV induces RNA decay pathways to modulate gene silencing and disease symptoms. The Plant Journal, 2017, 89(1): 73-84. DOI:10.1111/tpj.13323
[49] Hafrén A, Lõhmus A, Mäkinen K. Formation of Potato virus A-induced RNA granules and viral translation are interrelated processes required for optimal virus accumulation. PLoS Pathogens, 2015, 11(12): e1005314. DOI:10.1371/journal.ppat.1005314
[50] Krapp S, Greiner E, Amin B, Sonnewald U, Krenz B. The stress granule component G3BP is a novel interaction partner for the nuclear shuttle proteins of the nanovirus pea necrotic yellow dwarf virus and geminivirus abutilon mosaic virus. Virus Research, 2017, 227: 6-14. DOI:10.1016/j.virusres.2016.09.021
[51] Mäkinen K, Lõhmus A, Pollari M. Plant RNA regulatory network and RNA granules in virus infection. Frontiers in Plant Science, 2017, 8: 2093. DOI:10.3389/fpls.2017.02093
[52] Robles-Luna G, Furman N, Barbarich MF, Carlotto N, Attorresi A, García ML, Kobayashi K. Interplay between potato virus X and RNA granules in Nicotiana benthamiana. Virus Research, 2020, 276: 197823. DOI:10.1016/j.virusres.2019.197823
[53] Isler JA, Skalet AH, Alwine JC. Human cytomegalovirus infection activates and regulates the unfolded protein response. Journal of Virology, 2005, 79(11): 6890-6899. DOI:10.1128/JVI.79.11.6890-6899.2005
[54] Li SD, Peters GA, Ding KY, Zhang XL, Qin J, Sen GC. Molecular basis for PKR activation by PACT or dsRNA. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(26): 10005-10010. DOI:10.1073/pnas.0602317103
[55] Sharma NR, Majerciak V, Kruhlak MJ, Zheng ZM. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation. PLoS Pathogens, 2017, 13(10): e1006677. DOI:10.1371/journal.ppat.1006677
[56] Patel CV, Handy I, Goldsmith T, Patel RC. PACT, a stress-modulated cellular activator of interferon-induced double-stranded RNA-activated protein kinase, PKR. Journal of Biological Chemistry, 2000, 275(48): 37993-37998. DOI:10.1074/jbc.M004762200
[57] Finnen RL, Zhu MZ, Li J, Romo D, Banfield BW. Herpes simplex virus 2 virion host shutoff endoribonuclease activity is required to disrupt stress granule formation. Journal of Virology, 2016, 90(17): 7943-7955. DOI:10.1128/JVI.00947-16
[58] Cassady KA, Gross M. The herpes simplex virus type 1 US11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. Journal of Virology, 2002, 76(5): 2029-2035. DOI:10.1128/jvi.76.5.2029-2035.2002
[59] Dauber B, Poon D, dos Santos T, Duguay BA, Mehta N, Saffran HA, Smiley JR. The herpes simplex virus virion host shutoff protein enhances translation of viral true late mRNAs independently of suppressing protein kinase R and stress granule formation. Journal of Virology, 2016, 90(13): 6049-6057. DOI:10.1128/JVI.03180-15
[60] Sciortino MT, Parisi T, Siracusano G, Mastino A, Taddeo B, Roizman B. The virion host shutoff RNase plays a key role in blocking the activation of protein kinase R in cells infected with herpes simplex virus 1. Journal of Virology, 2013, 87(6): 3271-3276. DOI:10.1128/JVI.03049-12
[61] Finnen RL, Hay TJM, Dauber B, Smiley JR, Banfield BW. The herpes simplex virus 2 virion-associated ribonuclease vhs interferes with stress granule formation. Journal of Virology, 2014, 88(21): 12727-12739. DOI:10.1128/JVI.01554-14
[62] Johnston BP, McCormick C. Herpesviruses and the unfolded protein response. Viruses, 2020, 12(1): 17.
[63] Xu SK, Chen DJ, Chen DJ, Hu QL, Zhou L, Ge XN, Han J, Guo X, Yang HC. Pseudorabies virus infection inhibits stress granules formation via dephosphorylating eIF2α. Veterinary Microbiology, 2020, 247: 108786. DOI:10.1016/j.vetmic.2020.108786
[64] Harford CG, Hamlin A, Rieders E. Electron microscopic autoradiography of DNA synthesis in cells infected with vaccinia virus. Experimental Cell Research, 1966, 42(1): 50-57. DOI:10.1016/0014-4827(66)90318-1
[65] Katsafanas GC, Moss B. Vaccinia virus intermediate stage transcription is complemented by Ras-GTPase-activating protein SH3 domain-binding protein (G3BP) and cytoplasmic activation/proliferation-associated protein (p137) individually or as a heterodimer. Journal of Biological Chemistry, 2004, 279(50): 52210-52217. DOI:10.1074/jbc.M411033200
[66] Simpson-Holley M, Kedersha N, Dower K, Rubins KH, Anderson P, Hensley LE, Connor JH. Formation of antiviral cytoplasmic granules during orthopoxvirus infection. Journal of Virology, 2011, 85(4): 1581-1593. DOI:10.1128/JVI.02247-10
[67] Li T, Li X, Zhu WF, Wang HY, Mei L, Wu SQ, Lin XM, Han XQ. NF90 is a novel influenza A virus NS1-interacting protein that antagonizes the inhibitory role of NS1 on PKR phosphorylation. FEBS Letters, 2016, 590(16): 2797-2810. DOI:10.1002/1873-3468.12311
[68] Teijaro JR. Type I interferons in viral control and immune regulation. Current Opinion in Virology, 2016, 16: 31-40. DOI:10.1016/j.coviro.2016.01.001
[69] Langereis MA, Feng Q, van Kuppeveld FJ. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. Journal of Virology, 2013, 87(11): 6314-6325. DOI:10.1128/JVI.03213-12
[70] Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 2012, 7(8): e43031. DOI:10.1371/journal.pone.0043031
[71] Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 5'-triphosphate RNA is the ligand for RIG-I. Science, 2006, 314(5801): 994-997. DOI:10.1126/science.1132505
[72] Li LF, Yu JH, Zhang YX, Yang Q, Li YF, Zhang LK, Wang JH, Li S, Luo YZ, Sun Y, Qiu HJ. Interferon-inducible oligoadenylate synthetase-like protein acts as an antiviral effector against classical swine fever virus via the MDA5-mediated type I interferon-signaling pathway. Journal of Virology, 2017, 91(11): e01514-16.
[73] Sánchez-Aparicio MT, Ayllón J, Leo-Macias A, Wolff T, García-Sastre A. Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. Journal of Virology, 2017, 91(2): e01155-16.
[74] Dixit E, Kagan JC. Intracellular pathogen detection by RIG-I-like receptors. Advances in Immunology, 2013, 117: 99-125.
[75] McAllister CS, Toth AM, Zhang P, Devaux P, Cattaneo R, Samuel CE. Mechanisms of protein kinase PKR-mediated amplification of beta interferon induction by C protein-deficient measles virus. Journal of Virology, 2010, 84(1): 380-386. DOI:10.1128/JVI.02630-08
[76] Randall RE, Goodbourn S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. Journal of General Virology, 2008, 89(Pt 1): 1-47.
[77] George CX, Ramaswami G, Li JB, Samuel CE. Editing of cellular self-RNAs by adenosine deaminase ADAR1 suppresses innate immune stress responses. Journal of Biological Chemistry, 2016, 291(12): 6158-6168. DOI:10.1074/jbc.M115.709014
[78] Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Molecular and Cellular Biology, 1995, 15(10): 5376-5388. DOI:10.1128/MCB.15.10.5376
[79] Ng CS, Jogi M, Yoo JS, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T. Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. Journal of Virology, 2013, 87(17): 9511-9522. DOI:10.1128/JVI.03248-12
[80] Reineke LC, Lloyd RE. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. Journal of Virology, 2015, 89(5): 2575-2589. DOI:10.1128/JVI.02791-14
[81] Zhang PF, Li YY, Xia J, He JF, Pu JY, Xie J, Wu SY, Feng LQ, Huang X, Zhang P. IPS-1 plays an essential role in dsRNA-induced stress granule formation by interacting with PKR and promoting its activation. Journal of Cell Science, 2014, 127(Pt 11): 2471-2482.
[82] Reineke LC, Dougherty JD, Pierre P, Lloyd RE. Large G3BP-induced granules trigger eIF2α phosphorylation. Molecular Biology of the Cell, 2012, 23(18): 3499-3510. DOI:10.1091/mbc.e12-05-0385
[83] Li XL, Ezelle HJ, Hsi TY, Hassel BA. A central role for RNA in the induction and biological activities of type 1 interferons. Wiley Interdisciplinary Reviews: RNA, 2011, 2(1): 58-78. DOI:10.1002/wrna.32
[84] Gueydan C, Droogmans L, Chalon P, Huez G, Caput D, Kruys V. Identification of TIAR as a protein binding to the translational regulatory AU-rich element of tumor necrosis factor alpha mRNA. Journal of Biological Chemistry, 1999, 274(4): 2322-2326. DOI:10.1074/jbc.274.4.2322
[85] Piecyk M, Wax S, Beck ARP, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V, Streuli M, Anderson P. TIA-1 is a translational silencer that selectively regulates the expression of TNF-α. EMBO Journal, 2000, 19(15): 4154-4163. DOI:10.1093/emboj/19.15.4154
[86] Yu Q, Cok SJ, Zeng CB, Morrison AR. Translational repression of human matrix metalloproteinases-13 by an alternatively spliced form of T-cell-restricted intracellular antigen-related protein (TIAR). Journal of Biological Chemistry, 2003, 278(3): 1579-1584. DOI:10.1074/jbc.M203526200
[87] Sánchez-Jiménez C, Ludeña MD, Izquierdo JM. T-cell intracellular antigens function as tumor suppressor genes. Cell Death & Disease, 2015, 6(3): e1669.
[88] Ziehr B, Lenarcic E, Cecil C, Moorman NJ. The eIF4AⅢ RNA helicase is a critical determinant of human cytomegalovirus replication. Virology, 2016, 489: 194-201. DOI:10.1016/j.virol.2015.12.009
[89] Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker S, Hartmann RK, Grünweller A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Research, 2017, 137: 76-81. DOI:10.1016/j.antiviral.2016.11.011