微生物学报  2021, Vol. 61 Issue (6): 1743-1760   DOI: 10.13343/j.cnki.wsxb.20200640.
http://dx.doi.org/10.13343/j.cnki.wsxb.20200640
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

周煜琦, 张照婧, 位光山, 张政, 邓晔. 2021
Yuqi Zhou, Zhaojing Zhang, Guangshan Wei, Zheng Zhang, Ye Deng. 2021
全球变化下海岸带微生物生态研究进展
The impact of global change on microbes in coastal ecosystem
微生物学报, 61(6): 1743-1760
Acta Microbiologica Sinica, 61(6): 1743-1760

文章历史

收稿日期:2020-10-14
修回日期:2020-12-25
网络出版日期:2021-01-12
全球变化下海岸带微生物生态研究进展
周煜琦1 , 张照婧1 , 位光山2,3 , 张政1 , 邓晔1,4,5     
1. 山东大学海洋研究院, 山东 青岛 266237;
2. 自然资源部第三海洋研究所海洋生物遗传资源重点实验室, 福建 厦门 361005;
3. 中山大学海洋科学学院, 广东 珠海 519082;
4. 中国科学院生态环境研究中心, 中国科学院环境生物技术重点实验室, 北京 100085;
5. 中国科学院大学资源与环境学院, 北京 100049
摘要:海岸带地区是元素循环最活跃的自然区域之一,微生物作为地球元素循环的主要驱动者,对该区域生态系统中物质转化与能量流动起着至关重要的作用。本文从典型海岸带生态系统:海岸带湿地、海草床与海藻森林、近岸水体出发,围绕微生物参与的碳、氮循环过程以及其中的温室气体排放情况,综述了在全球气候变化与人为活动干扰的作用下,海岸带地区的微生物群落对外界环境变化的响应机制以及生态功能维持机制,最后对海岸带系统中微生物生态研究进行了初步的展望。
关键词全球变化    海岸带生态系统    海岸带微生物    碳循环    氮循环    
The impact of global change on microbes in coastal ecosystem
Yuqi Zhou1 , Zhaojing Zhang1 , Guangshan Wei2,3 , Zheng Zhang1 , Ye Deng1,4,5     
1. Institute of Marine Science and Technology, Shandong University, Qingdao 266237, Shandong Province, China;
2. Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of the PR China, Xiamen 361005, Fujian Province, China;
3. School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, Guangdong Province, China;
4. CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China;
5. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: In all earth ecosystems, the coastal zone is one of the most active areas in multiple biogeochemical cycles. As the major driver of natural biogeochemical cycles, microbial community in coastal ecosystems is of vital importance to the material transformation and energy flow in this critical zone. In this review, we summarized the responses and feedbacks of microbial community to the circumstances of climate change and anthropogenic disturbance in typical coastal areas, such as coastal wetlands, offshore waters, seagrass meadows and kelp forests. It was mainly elucidated around microbes-involved carbon and nitrogen cycles, and greenhouse gases emission to reveal the microbial mechanisms on coastal ecosystem functioning and maintenance. Finally, some preliminary prospects are provided for the future studies of microbial ecology in the coastal zones.
Keywords: global change    coastal ecosystem    coastal microbes    carbon cycle    nitrogen cycle    

海岸带地区是承接陆地与海洋的交互地带,通常包含潮上带、潮间带和水下岸坡3个部分(图 1)[1],从人文地理角度来看,该地区仅占据全球4%的陆地面积和11%的海洋面积[2],却占有25%的全球初级生产力,承载着超过40%的世界人口[3]。海岸带生态系统具有复合性、边缘性和活跃性的基本特征,在陆地-大气-海洋的耦合力作用下,对环境变化的响应极为敏感,是全球最具代表性的生态脆弱带之一[4]。近代以来,化石燃料的利用和人类活动的加剧引起全球气候变暖的同时,还引发了海水性质与区域气候的改变[5]。大气二氧化碳(CO2)浓度升高,溶解进入海水的CO2增加,冲击了海水中原有的碳酸平衡体系,造成海洋酸化[5]。而气候变暖导致表层海水温度升高,海水层化加剧,不利于海水的混合,上下层营养物质的传输受到限制[6]。此外,氧气的溶解度与海水温度相关,温度升高,氧气的溶解度降低,缺氧区也会相应的扩大[7]。同时气候变暖导致冰川融化,引起海平面上升使得沿岸湿地水淹时间延长、淹水频率增加[8],而极端天气、海洋风暴的发生频率也增加[9]。而其他人为活动,如营养盐和其他污染物的排放、近岸地区的捕捞活动、植被的破坏、土地利用方式的改变也都以不同方式影响海岸带生态系统[10-12]。这一系列环境和气候变化都对全球海岸带生态系统带来巨大的冲击。

图 1 海岸带生态系统示意图 Figure 1 Schematic diagram of coastal ecosystem.

海岸带地区处于地球表层岩石圈、水圈、大气圈与生物圈相互交接地带,是各种物质转换与能量流动最活跃的区域[4]。而微生物是生物地球化学循环的主要驱动者,主导着该区域生态系统中碳、氮、硫等重要元素的循环过程[13]。在全球气候变化与人为活动的影响下,微生物在碳、氮等重要元素的生物地球化学循环过程中的响应势必会影响整个海岸带生态系统的整体功能。

海岸带生态系统作为重要碳库,全年有机碳埋藏量可以达到0.08-0.22 Pg,大约为陆地全年净碳埋藏量的10%[14-15],因此微生物主导的碳固定以及矿化分解作用对海岸带碳循环至关重要。微生物对碳元素的固定主要依靠光能自养微生物吸收周围环境中的无机碳,如CO2,并以有机碳的形式进行储存;而与其相反的过程是化能异养微生物在有氧或是无氧的情况下,代谢消耗有机碳,释放CO2或是甲烷(CH4)[16]。这两个相互平衡的过程共同决定了海岸带生态系统的碳储存能力和总量,而后者还将进一步影响全球温室气体的排放。

针对氮循环过程,海岸带生态系统中的微生物一方面大量消耗陆源营养盐,减少过多的氮素进入海洋生态系统;另一方面也通过固氮作用向寡营养海域补充氮素,调和氮素的分布。微生物驱动的海岸带氮循环,依据参与的生态过程大体可以分为3个部分(图 2)。固氮过程:是将氮气(N2)固定为铵根(NH4+)的过程,由固氮微生物完成。海岸带湿地主要的固氮微生物包括光合固氮菌,如蓝细菌和异养固氮菌,固氮微生物的丰度和多样性反映了系统的固氮潜能[17]。脱氮与氮留存过程:主要由厌氧氨氧化微生物(anammox)、反硝化微生物、硝酸盐异化还原微生物(DNRA)完成。厌氧氨氧化和反硝化过程能够将无机氮以N2的形式排出系统,是彻底去除陆源输入无机氮的有效途径[18]。而DNRA将硝酸盐还原为生物更易利用的NH4+,将无机氮固定于生物体或是令其重新进入硝化途径,将无机氮留存在体系中[19],与脱氮功能相反。这3个过程都以NO3为底物,存在一定的竞争关系,体系中这些过程所占的比例决定该体系是属于脱氮功能还是氮留存功能[19-20]。此外,海岸带生态系统也是氧化亚氮(N2O)的“源”和“汇”。硝化、反硝化、DNRA过程产生N2O也消耗N2O,这些相关微生物在系统中的活动决定了该系统N2O的吸收和排放过程。而N2O这一重要温室气体的吸收与排放又深刻地影响着全球的气候变化。

图 2 微生物参与的主要氮循环过程示意图[21-23] Figure 2 The Nitrogen cycle mediated by microorganisms[21-23].

目前,海岸带生态系统作为典型水圈环境之一,碳、氮等重要元素循环的微生物驱动机制已经成为微生物学和生态学领域的前沿科学问题[24]。本文将选择3类典型海岸带生态系统:海岸带湿地、海草床与海藻森林、近岸水体(图 1),探究碳、氮元素的地球生物化学循环过程的改变,重点围绕以下问题进行介绍:(1) 参与碳、氮循环的微生物群落如何响应气候变化与人为干扰;(2) 微生物的响应如何影响碳、氮循环过程;(3) 各系统中微生物活动是否加剧温室效应。

1 海岸带湿地生态系统

红树林生态系统和盐沼生态系统是两类典型的海岸带湿地生态系统。红树林(mangrove)大多生长在热带、亚热带低能海岸潮间带上部,受周期性潮水浸淹,是以红树植物为主体的常绿灌木或乔木组成的潮滩湿地木本生物群落[25]。盐沼(salt marsh) 通常是指沿海岸线受海洋潮汐周期性或间歇性影响的覆有草本植物群落的咸水或淡咸水淤泥质滩涂,通常位于在中、高纬度及低纬度盐度较高的河口或靠近河口的沿海潮间带(intertidal zone)[26]。红树林和盐沼在我国均有分布,其中红树林主要断续分布于我国东南沿海热带和亚热带海岸、港湾、河口湾等受掩护水域,全国分布总面积22024.9 ha (2001年统计结果)[27];盐沼则存在更加广泛,几乎在我国每个沿海省市均有分布[26],面积为199628 ha (2015年统计结果)[28]

1.1 红树林

在红树林湿地的碳循环过程中,植物是固碳的主要力量[29],而微生物主要在有机质矿化中发挥关键作用[30],因此在全球变化背景下,研究者重点关注微生物在有机质矿化过程中的响应和效应(表 1)。首先,气温的增加对红树林的有机碳分解具有较为一致的促进作用;而海平面上升对碳分解具有一定的抑制作用。增温一方面倾向于增强微生物的呼吸速率,消耗土壤碳储存或减缓碳储存速度[30];另一方面引起植被的演化,由于不同植被对有机碳分解速率的影响不一致,这种间接影响的方向在总体上不能确定[31]。而海平面上升导致湿地的水淹面积增多、水淹时间延长,导致土壤含氧量下降、盐度增加[32]。当土壤处在低氧水平,微生物对有机碳的厌氧氧化速率比有氧环境慢[30],另外,在高盐环境中微生物活动受限,短期内有机碳消耗减缓[30],有利于碳的储存[33]。此外,单就红树林来说,土地利用方式的改变也是该系统固碳功能丧失的一大影响因素。红树组成中含有大量的单宁酸(tannin),可以抑制微生物的矿化作用,当单宁酸与其他溶解有机碳结合时,有机碳在河口湿地的固定效率增加[34],红树林湿地的丧失削弱了原生态系统的碳固定功能。

表 1. 海岸带生态系统碳、氮循环影响因素 Table 1. The effects global change on coastal ecosystem carbon and nitrogen cycle
Ecosystems Influencing factors and their effects on carbon cycle Influencing factors and their effects on nitrogen cycle References
Mangrove a. Warming increased microbial decomposition rate of organic carbon;
b. Sea level rise inhibited decomposition of organic carbon;
c. Warming, nutrient input and vegetation alteration tended to enhance methanogenic activity.
a. Nutrient input, heavy metals pollution and oil leakage decreased microbial diversity and nitrogen fixation rate;
b. Low level nutrient input slightly enhanced nitrogen retention processes; high level nutrient input enhanced nitrogen removal processes;
c. Nutrient input and sea level rise could increase N2O emission.
[10-12, 30-50]
Salt marsh a. Sea level rise and grazing influenced soil microbial diversity, which was beneficial for local carbon stock;
b. Nutrient input and warming promoted microbial metabolic activities, which was harmful for carbon stock;
b. Nutrient input enhanced methanogenic activity, while sea level rise could inhibit it.
a. Plant invasion could offset nitrogen cycle inhibition caused by nutrient input; increased atmospheric CO2 promoted plant growth and rhizosphere nitrogen-fixing activity;
b. Abnormal precipitation, nutrient input, oil leakage, sea level rise, sea water erosion could weaken nitrogen retention processes;
c. Spartina alterniflora invasion enhanced microbial N2O absorption, while sea level rise and antibiotics input increased N2O emission.
[10, 11, 17, 30-33, 35, 51-73]
Seagrass meadow a. Nutrient input, ships and warming could increase microbial decomposition rate;
b. Overfishing, intensified heat wave and warming increased CH4 emission.
a. Warming and vegetation restoration increased nitrogen fixation rate;
b. Warming tended to promote nitrogen removal processes, and the effects of nutrient input on the processes varied under different nutrient concentrations.
[47, 78-92]
Kelp forest a. Warming and nutrient input could shift microbial community structure in kelp forest and accelerate organic carbon decomposition. - [95]
Nearshore waters a. Warming, intensified seawater stratification increased phytoplankton biomass in high latitude area and had opposite effect in low latitude area;
b. Glacial melting, warming and nutrient input enhanced organic carbon decomposition by bacterioplankton;
c. Nutrient input caused phytoplankton bloom and CH4 emission increased during bloom.
a. In oligotrophic water, sea water acidification reshaped nitrogen-fixation related microbial community structure, and increased nitrogen-fixation rate;
b. Expansion of OMZ increased nitrogen removal and retention processes, as well as N2O emission.
[106-135]

增温和营养盐输入对红树林的CH4排放具有普遍的促进作用(表 1)。在增温的情况下,湿地深层土壤中的产甲烷菌的功能被强化,虽然表层土壤的甲烷氧化菌的功能同样被强化,但是远远无法抵消底层增加的CH4产生量[35]。Zheng等发现人为输入的营养盐增加了红树林的甲烷排放[10];Kim等发现在氮素受限的盐沼中添加氮素减弱了硫酸盐还原菌对产甲烷菌的竞争作用,产甲烷菌增加,CH4的排放量增加[11]。另外,植被类型改变也会影响红树林湿地的CH4排放量。植被往往通过改变土壤的理化性质和营养条件塑造根际微生物群落,导致不同植物周围微生物群落的CH4排放量也存在差异,比如,红树林入侵物种(或是人工补种的物种),相比本土物种可能会增加CH4排放量,这是由于底泥中的产甲烷菌增加,而甲烷氧化菌却相对减少[36-37]

而在红树林湿地的氮循环过程中,气候变暖和人为污染物排放倾向于削弱该系统的固氮功能,即使进行生态修复,短期内也无法完全恢复其固氮能力(表 1)。固氮微生物在20-30 ℃时,固氮速率呈现最大值,随后显著下降,固氮关键蛋白在37-41 ℃时被抑制,未来气候变暖可能在低纬度地区会抑制微生物的氮固定效率[38]。固氮微生物对重金属污染、石油污染相当敏感,污染物流入会减少红树林中固氮微生物的丰度和多样性,导致系统固氮能力下降;其间生态位冗余减小,对外界扰动的耐受能力下降[12, 39]。成熟的红树林由于底泥中积累的有机质比较丰富,异养固氮菌的能量来源更多,且固氮微生物与其他微生物菌群交互作用较强。当相互合作的微生物菌群在新生红树林中不能完全恢复时,固氮功能也不能完全恢复[40],所以原生红树林固氮能力更强[41-42],人工修复的红树林短期内并不能完全恢复其固氮能力。

红树林本身具有的氮留存功能可能由于营养盐输入、生物入侵等因素受到威胁(表 1)。红树林生态系统的生产力极高,对营养盐的需求也很高,原始红树林处于氮素限制的情况,所以低营养盐环境下倾向于将氮以DNRA的形式保留在体系中,而当营养盐浓度超过系统能够承受的范围时,体系倾向于以厌氧氨氧化和反硝化形式排出无机氮,Fernandes等发现富营养化的红树林DNRA速率是原始红树林的一半,不利于氮的留存[43]。另外,互花米草入侵改变了红树林底泥有机质和pH值,细菌群落结构随之改变,反硝化速率增强,土壤氮留存效率减小[44]。海平面上升导致区域盐度升高,反而有利于Anammox和DNRA过程。Anammox微生物对盐的耐受能力比较强,在盐度增加的情况下该过程被强化;DNRA和反硝化微生物的活动都受盐度抑制,但相比之下DNRA更能适应高盐环境,这可能是盐度增加使得硫还原速率也增加[45],DNRA可以代谢还原态硫,使其耐受硫化物的毒性[46]

红树林是N2O的“源”,但在不同分布区域N2O排放量差异很大,受多种环境因子影响[47] (表 1)。陆地营养盐的无机氮的输入倾向于强化湿地硝化作用和反硝化作用,导致这2个过程的中间产物N2O的排放量增加[48]。高盐度环境虽然抑制反硝化作用,但可能增加厌氧氨氧化细菌的丰度,这是由于古菌对盐度耐受性较高,且盐度轻度增加就可能抑制其他生物对氨的吸收,为氨氧化微生物提供了充足的底物[49],促进氨氧化过程和N2O的排放[46]。而污水排放中高浓度的锌可能在短时内抑制硝化作用,减少N2O的排放[50]

1.2 盐沼

在盐沼生态系统的碳矿化过程中,气候变化或人类活动因素的影响大多通过自养生物(植物、自养细菌)的传递进而改变盐沼土中的异养微生物群落(表 1)。盐沼碳矿化对增温和海平面上升的响应与红树林具有一致性[30-33]。另外,随着人类活动的增加,陆源营养盐输入极大增强了蓝细菌的活动,而蓝细菌分泌出更多容易利用的碳源,进而促进异养微生物的活动[51],而对盐沼中的碳储存产生负面影响[52]。同时也有研究发现,在盐沼生态系统中进行的畜牧生产,改变了植物分泌物和土壤的透气性,使得地下微生物群落中真菌的比例增加且有机碳分解相关的胞外酶活性下降,最终导致碳留存效率变高[53]。而针对CH4的生成过程,与红树林生态系统相似,增温和营养盐输入对盐沼CH4排放也具有普遍的促进作用[11, 35] (表 1)。与此同时,盐沼的CH4排放还受到海平面上升的影响,海平面上升带来海水中的硫酸盐,硫酸盐较CO2 (被还原成CH4) 优先作为电子受体使用,因此CH4的产生也会受抑制[31]

盐沼区域的固氮量超过海洋总体固氮的30%,对寡营养区域维持生产力意义重大,其中异养固氮菌发挥的作用超过蓝细菌[17] (表 1)。异养固氮菌与植物的联系较为紧密,许多外界干扰通过影响植物来影响生态系统的固氮效率。CO2增加促进了植物生长,植物根际、叶际固氮微生物活性也随之增强[54];植被受降水异常影响,生长受限时,固氮微生物群落发生改变,固氮效率下降[55]。另外,NH4+对固氮酶基因表达和酶活具有抑制作用,有研究表明,盐沼中NH4+浓度超过100-200 μmol/L时会抑制固氮作用[56-57],但实际情况可能更复杂。Newell等发现无机氮输入使得固氮微生物群落多样性降低,但该区域仍能够保留部分固氮功能[58]。Huang等发现,互花米草在长江河口地区的入侵可以完全抵消营养盐输入对固氮微生物活动的抑制[59]

DNRA和反硝化作用都对盐沼地区的硝酸盐还原具有重要作用,而anammox在此生境中的作用不大[60-61] (表 1)。营养盐输入、石油污染、降水异常、海平面上升、海水侵蚀改变分别对反硝化、DNRA过程产生不同的影响。Tiedje等指出有机碳和硝酸盐的比例越高,越有利于DNRA活动[62],反之有利于反硝化微生物的活动[62]。比如,无机氮肥输入降低了盐沼底泥的有机质和硝酸盐比例,使得DNRA在硝酸盐还原中的比例下降,但两者的速率都在硝酸盐输入的情况下增大[63-64]。石油污染会严重改变盐沼的微生物群落,毁坏原有植被。Tatariw等发现中度污染的盐沼在恢复六年后群落结构仍与轻微污染的样地仍有显著差异,且反硝化功能不到轻微污染样地的一半[65]。除了污染外,气候变化引发的其他自然效应也会使原来的生态系统功能受损。Marks等模拟洪涝灾害会将大量的淡水一次排入盐沼,通过酶活检测,发现反硝化速率在淡水冲入后大大降低[66]。Murphy等发现海平面上升同样不利于反硝化过程,这是由于海水携带硫元素,有利于DNRA微生物代谢,对反硝化微生物有毒害作用[67]。当海平面继续上升,某些区域的功能可能随土地的淹没而丧失。在美国切萨皮克湾盐沼中,米草为贻贝提供庇护所,其根际分泌物促进微生物生长;贻贝捕获水中的颗粒氮(浮游微生物或其他藻类),大约一半氮以NH4+的形式被排出供应植物、微生物生长,硝化-反硝化过程促进系统稳定脱氮[68-69],因此,海平面上升可能导致该地区这一生态功能发生重大改变。

盐沼地区既是N2O的“汇”也是“源”,营养盐输入、抗生素流入、植被、海平面上升等因素会影响盐沼地区的N2O排放(表 1)。Yuan等发现江苏近岸盐沼的N2O排放量不大,甚至在生长季可以吸收额外的N2O,特别是互花米草入侵的区域,N2O的排放量最小[70]。这可能是由于盐沼本身属于氮限制的区域,互花米草迅速生长,对营养盐需求极大,与反硝化、硝化微生物竞争无机氮,反硝化微生物被迫利用N2O,对NH4+亲和力较高的硝化微生物在该环境中得以留存[70]。营养盐输入与植被具有交互作用,硝酸盐添加在植物生长季不影响N2O排放;而在生长放缓的时期,N2O排放也与硝态氮输入相关,硝态氮的输入使得盐沼从N2O的“汇”变成“源”[71]。海平面上升导致下游盐沼的水淹时间和水淹频率增加,氧气对反硝化微生物的抑制作用减弱,反硝化微生物的活性增强,且海水淹没区域硫化物增加,硫化物比N2O优先被还原,N2O的排放量增加[72]。抗生素可能引发同样的结果,以氯霉素为例,抗生素流入河口,硝酸盐还原为N2的过程受到抑制,中间产物N2O增加[73]

综上,湿地生态系统对气候变化和人为干扰的响应具有复杂性,不同因素对系统碳、氮循环功能和温室气体排放影响并不一致,且受其他环境因子共同作用,因此不同盐沼生态系统中参与碳、氮循环微生物的响应和效应可能存在巨大的差异。

2 海草床和海藻森林生态系统

海草床和海藻森林都分布于近岸地区,其中,海草床(seagrass meadow)是单子叶草本植物海草为主体的高效固碳生态系统,主要分布于热带和温带地区[74];海藻森林(kelp forest)是以大型褐藻为主的海岸带生态系统,大量分布于温带和寒带,少量分布于热带[75]。中国海草床分布广泛,纬度跨度大,可大体划分为南海海草分布区和黄渤海海草分布区[76],面积约为8765.1 ha;中国大型海藻分布广泛,大体分为黄海西区、东海西区、南海北区和南海南区这四大海藻区系[77],但在中国境内以大型褐藻为主的海藻森林仍未见报道。

2.1 海草床

海草床的面积不到海洋总面积的0.2%,但它每年的碳埋藏量可以占据超过全球海洋碳埋藏量的十分之一[78]。这主要是由于海草床本身的初级生产力很高,并且海草含有大量微生物很难降解的木质纤维素,沉降过程中可以留存比较多的有机颗粒[79],这些有机颗粒沉降到底后,由于缺氧,微生物对有机碳的矿化速率很低,再加上海草根系的固定作用,底泥不易被风浪扬起,暴露于氧气中,所以其中的有机碳可以长期留存[78]。另外,海草上附生植物的固碳作用和海草草冠对有机悬浮颗粒物的捕获也增加了海草床的碳埋藏量[80]。海草床底泥的矿化分为底泥表层的需氧矿化和底泥深层的厌氧矿化过程,表层极易受温度、营养盐等因素影响,深层比较稳定,但对物理扰动和溶解氧比较敏感(表 1)。Trevathan- Tackett等通过室内模拟实验发现增温和营养盐输入改变了叶际微生物群落,并且强化了微生物对木质纤维素的降解过程,使得海草床底泥表层部分碳固定减少[79],而深层底泥由于缺氧,活性微生物仅占表层的1%,有机碳的分解作用在这种情况下极弱[79, 81]。然而海上热浪可能直接毁坏海草床,并且卷起深层底泥,使它们完全暴露在有氧环境中,其中的有机碳被微生物大量分解,排放出大量CO2[82]。另外,新生有机碳(如藻类爆发后沉降)或无机营养在人为扰动或自然条件下进入深层底泥,可能促进深层微生物矿化比较古老的有机碳储存[83]

外界干扰通过海草植被影响了海草所在底泥的CH4排放(表 1)。渔业的过度捕捞导致食草生物的捕食者数量减少,食草生物增加,海草能够进行光合作用的部分被食草生物大量啃食[84];营养物质的排放和船舶活动扬起的底泥,削弱海水的透光度[84];气候变化导致正午海水短时超高温变得频繁,海草光合系统被破坏,短时内无法恢复[85]。这些都会导致海草的光合作用受到抑制,由根部分泌到底泥中的氧气减少,增加厌氧微环境,有利于产甲烷菌产CH4[84-85]。在寡营养的红海地区,海草床反而促进CH4排放,这是由于海草的根际分泌物有利于产甲烷菌的生长[86]。除此之外,增温也会直接促进CH4的代谢活动,增加CH4的排放[85]

增温和人为活动对海草床的促进或是抑制都会直接影响海草床的固氮效率(表 1)。海草根际附生的异养固氮菌是海草床固氮的主力,其生长受植物根际分泌的易降解有机碳的控制,因此海草床植被的生产力是该区域固氮效率的重要影响因子[57]。Cole等通过比较修复7-8年的海草床底泥,无植被底泥和修复2-3年的海草床底泥固氮效率,证实了这一观点[87]。Garcias-Bonet等观测发现地中海区域海草底泥的氮固定速率随温度升高而升高,预计最适温度为31 ℃,但增长速率比无植被区域慢,这可能是由于两者的微生物群落结构不同,对温度的响应机制也不尽相同[88]

海草周围附生着许多微型藻类,这些微型藻类在增加海草床初级生产力的同时,也会影响系统的氮循环,陆地营养盐的输入让这种影响体现得更为明显[89] (表 1)。当体系无机氮浓度较低,底层微藻(benthic microalgae)与反硝化和DNRA微生物竞争NO3时,两者速率都很低[90];当合适水平的无机氮输入时,微藻不再竞争NO3时,反硝化速率升高,系统倾向于脱氮;当体系富营养化加剧,微藻大量繁殖,取代海草成为主要初级生产者,体系变得缺氧且硫化物增加,DNRA在氮循环过程开始占主导地位,体系倾向于氮留存[91]。除了营养盐的影响外,温度对反硝化和厌氧氨氧化作用具有直接的促进作用,这意味着未来气候变暖的情况下,海草床的脱氮速率可能增加[92]。而关于海草床N2O排放量的研究仍报道不多,Murray等根据硝化、反硝化速率以及N2O/N2排放比推测全球海草床的N2O排放量大致为0-0.19 Tg/yr[47]。而一定水平的营养盐输入以及增温都会加快反硝化速率,从而增加N2O排放[91]

2.2 海藻森林

海藻森林的生产力极高,在5%海岸带区域内完成62%的海岸带总初级生产力[75]。它作为有机碳捐赠者存在,大型藻类产生的有机碳大部分比较不稳定,其中20%-40%以溶解有机碳存在,几乎不形成沉积物,部分有机碳随水流运动进入邻近的其他生态系统中,如海草床、红树林、盐沼、深层海水等,被分解或埋藏[93-94]。也正因为大型藻类产生的有机碳比较不稳定,所以转移过程中有机碳的分解速率和接收有机碳的生态系统的碳埋藏效率都会大大影响碳储存[94]。颗粒有机碳和溶解有机碳都在转移过程中进入微生物循环(microbial loop),微生物分泌胞外酶降解有机碳,降解速度与有机碳本身的稳定性、温度、营养盐输入等因素相关,其中增温和营养盐输入都会改变微生物群落结构,加速有机碳矿化[95] (表 1)。

大型海藻生长迅速,易受氮素限制,目前已有较多论文描述海藻如何受氮素影响,但该系统中有关于微生物介导的氮循环相关内容仍然比较有限。由于海藻森林生态系统没有积累底泥,大量的微生物悬浮于海藻森林周围或附着于海藻根际、叶际或是死亡的组织上,受海藻影响[75]。气候变化和人类活动带来的影响主要通过海藻传递至周围的微生物。如固氮微生物大量附生于巨型海藻组织及其形成的有机颗粒中[75],海藻森林的退化可能导致原本与海藻共生的固氮微生物多样性下降,系统的整体固氮水平降低。而关于该系统的脱氮功能目前还未见报道。

巨型海藻使得临近海域局部有机质大量增加,其中生长速度较快的微生物占据优势地位,随着有机质的迅速代谢,局部缺氧区域增加,有利于产甲烷菌和反硝化微生物的活动,N2O和CH4的排放量增加[96]。气候变化和人为干扰对海藻森林的破坏[97],可能也同时减少了局部区域的N2O和CH4的排放。

3 近岸水体生态系统

近岸水体中以浮游微生物为主,它们以碳固定的形式参与海岸带碳循环,并且在其中占据非常重要的地位。微生物循环是水环境中能量流动的重要环节[98],以食物链的形式连接了各类别的微生物。浮游植物(phytoplankton)决定了微生物循环的初级生产力,主要通过碳源与浮游细菌(bacterioplankton) (包括蓝细菌、古菌、其他异养细菌)建立联系,浮游植物分泌或以细胞裂解方式释放有机物促进浮游细菌的生长,反过来,浮游细菌分解有机碳释放无机碳源,促进浮游植物的生长[99]。浮游动物以捕食者的形式存在,其中的大型浮游动物可能捕食小型浮游动物,小型浮游动物(small-sized zooplankton)捕食浮游植物或是浮游细菌,最终被大型动物捕食,营养级向大型动物传递,进入传统食物网[100]。微生物循环作为碳泵的重要组成[101],介导浅层初级生产者固定的有机碳向深层传递。病毒是海洋中丰度最高的有机体,通过对宿主的致死作用和介导基因水平转移改变微生物群落的多样性和丰度[102],通过病毒裂解作用释放细胞内有机质,这些有机质可以重新被利用或是沉降[103],该过程促进碳、氮等元素在微生物间的循环[104],最终影响海岸带地区的生物地球化学循环[105]

海岸带浮游植物在气候变化与人为干扰的作用下群落结构发生改变,但生产力一般不会降低,即从大气中吸收的CO2没有减少(表 1)。Yvon-Durocher等在中纬度地区的增温控制实验中发现,浮游植物在物种水平和群落组成水平都朝向C: P或N: P的比例较高的方向演化,N: P较高的绿藻更适应高温环境,而N: P较低的红藻(如硅藻)更适应低温环境[106]。Kaufman等用气候模型模拟高纬度地区罗斯海的浮游植物在未来100年的变化,结果也证明了上述结论,硅藻将在该环境中增加[107]。Keys等模拟增加水温、高CO2环境,证明以上因子的改变虽然不会影响海岸带浮游植物的生产力,但群落结构由nanoflagellates主导转向HAB (harmful algal bloom)物种主导[108],生态系统可能因此变得不稳定。浮游植物在群落水平上的细胞尺寸可能在气候变化中被改变[109-111],浮游植物的基础代谢、营养摄取、捕食关系、细胞裂解后有机碳的沉降速度都随之发生改变,而这些过程都与碳固定过程密切相关[112],且在不同的区域呈现不同的趋势。Svensson等提出中低纬度地区夏季增温、盐度降低的情况下,初级生产者的尺寸减小[113],总体上基础代谢增强,不利于生物量的积累[114]。Biggs等发现夏季南极海岸带海水层化加剧,以及风驱动的海水混合作用,使得表层营养充足,尺寸较大的硅藻在群落中的比例增加[115],有利于生物量积累和有机碳沉降[112]

气候变化和污染物排放主要以各种溶解有机碳的形式影响浮游细菌群落结构、代谢过程,海岸带有机碳的分解过程可能被强化,不利于长期碳固定(表 1)。藻类爆发和病毒裂解释放出大量生物有机碳,可能增加特定有机碳的分解类群的丰度[116],陆源有机碳大量进入海水对群落结构的影响可能更深刻[117]。Lindh等证实大量陆源溶解有机碳随着增加的降水进入海水,另外,增温增加了浮游细菌的能量需求,迫使其利用结构、成分复杂的陆源有机碳,该实验中62%的浮游细菌类群多样性因此改变[117]。如上文介绍,气候变化可能加剧藻类爆发,增加近岸生物有机碳,但这类有机碳在充足的无机氮源环境中,很容易被分解,无法以惰性有机碳的形式长期储存[118]。另外,北极冰川中含有丰富的有机碳,随着冰川融化进入海水,促进了原核生物的生长,β-葡萄糖苷酶等相关的酶表达量升高,原本储存在海冰中的碳被释放出来[119]

除了近海底泥排放CH4,浅层海水对CH4排放也有贡献。浮游植物产生的二甲基巯基丙酸内盐(DMSP)的降解产物二甲基硫(DMS)或甲硫醇(MT)在厌氧条件下被产甲烷菌利用,释放出CH4的这一过程是海洋表层水和底泥产生CH4的重要途径[120],在表层水中一般认为悬浮有机颗粒和动物消化系统可以为产甲烷菌提供厌氧微环境[121]。藻类爆发可能导致短时间内悬浮有机颗粒增加、溶解氧下降[122],有利于产甲烷菌的活动。浮游动物在捕食浮游植物的过程中,由于消化系统相对厌氧的环境,产甲烷菌氧化部分底物产生CH4,CH4的排放量与浮游动物的类别相关[123]。在人为干扰和气候变化的双重压力下,浮游动物的群落组成发生改变,浮游动物介导的CH4排放量也会发生改变(表 1)。除了产甲烷菌介导的厌氧甲烷排放,藻类在有氧情况下也可以产生CH4。Bižić-Ionescu等发现蓝细菌可以在有氧、且不存在DMSP等前体物质的情况下产生CH4,这意味着由蓝细菌主导的水华爆发可能同时增加CH4的排放[124]

不同近岸海域系统固氮功能的主要影响因素不尽相同(表 1)。在富营养水环境中的固氮蓝细菌受无机氮素影响较大,环境中达到30 μmol/L NO3或200 μmol/L NH4+就会持续抑制固氮过程[125]。而某些结合在有机颗粒上的异养固氮菌,由于有机颗粒给予的微环境,如较高的C: N值有利于固氮,即便在高无机氮的环境下,仍能维持较高的群落多样性和固氮水平[126]。除了有机颗粒以外,浮游动物的肠道同样可以为固氮微生物,如UCYN-A蓝细菌提供了厌氧且有机质丰富的环境[127],因此,即便在富营养水域中,由于特殊微环境的存在,系统仍能保留部分的固氮功能,气候变化也通过浮游动物将影响传递至固氮微生物。而在寡营养海岸带区域,如地中海科西嘉岛沿岸,人为干扰较小,受气候变化因素影响较显著,海水中CO2分压增大,pH值下降使得其中的固氮微生物群落发生改变,固氮的速率增加[128]

厌氧微生物的DNRA、反硝化、anammox过程对氧气都比较敏感,近岸表层海水中氧气比较充裕,所以这些过程也较少发生,即便在蓝细菌形成的颗粒物中反硝化作用也比较微弱[129] (表 1)。但在最少含氧区(OMZ),反硝化作用比较强[130],OMZ的扩大,可能增强该区域的脱氮作用。除了OMZ以外,在淡水环境中藻华的爆发也会提供微氧或缺氧环境,厌氧氨氧化[131]或反硝化[132]、DNRA[133]的作用都被强化,增强了脱氮、氮留存等功能。

海水是N2O排放的热点[47],在气候变化的影响下,N2O的排放可能继续增加(表 1)。升温可能导致硝化过程的两部分脱节,氨氧化古菌在温度升高的情况下生长加速,亚硝酸盐在海水中积累,由于亚硝酸盐更易被转化成N2O,沿岸海水的N2O增加[134]。海水pH值下降可能短期内促进氨氧化微生物的N2O形成过程,即便氨氧化微生物丰度下降,N2O排放在这种情况下显著升高[135]。秘鲁海岸上升流与OMZ不断碰撞混合,造成有氧-无氧环境的反复切换,增加了不完全反硝化和硝化反应的速率,导致该区域的N2O量排放极高[130],未来OMZ的扩大,可能继续增大N2O排放。

4 展望

目前,海岸带生态系统的相关研究,以红树林生态系统为例,在宏观方面主要涉及气候变化对湿地植被、土壤呼吸(植物根际呼吸和微生物碳分解)、CH4排放的影响;在微观方面,研究主要集中于从代谢水平观测有机质(从简单碳源到难利用碳源)以及代谢相关微生物胞外酶的研究,通过这些研究来预测土壤碳分解速率在气候变化的情况下是否会加速等。而微生物作为海岸带生态系统的一部分,对维持生态系统功能同样具有重要的意义,相较于陆地自然生态系统,海岸带微生物群落结构、多样性、功能类群分布及其在气候变化下响应状况的研究仍比较缺乏,而其中的机制更需深入探索。尤其是通过高通量分子检测技术从微生物群落组成、多样性、功能类群揭示气候变化影响的文章却很匮乏,而这类研究往往是联系微观机制和宏观现象的桥梁。此外,除了原核的细菌和古菌,其他真核微生物,包括真菌和原生动物对气候变化的响应,以及它们在地球生物化学循环中发挥的作用也需要进一步关注。

此外,微生物群落在区域异质性极高的海岸带生态系统中的动态变化特征也应该得到关注。气候变化直接或间接地改变微生物的群落结构与功能,已有一些学者针对一个特定时期或特定地点的微生物响应状况展开了研究,但海岸带生态系统多样性极高,时间周转和空间分布变化都很大,往往在不同季节、不同区域下会得到不一致的结果,从而造成宏观现象与微观检测结果的不一致,在海岸带从陆到海的范围内开展长时间的微生物观测,才能更好地解决宏观与微观数据的结合。

最后,在海岸带生态系统中,微生物群落对气候变化和人为干扰的抵抗力、恢复力及其相关功能稳定性的研究也亟需加强。展开微生物群落对气候变化和人为干扰条件的稳定性研究,才能更好地预测微生物群落在长期变化和干扰条件下的功能稳定机制,为全球变化下海岸带生态功能维持提供更为全面的预测。

References
[1] Wu ZF, Hu WP. Coastal zone and earth system sciences research. Progress in Geography, 1999, 18(4): 346-351. (in Chinese)
吴志峰, 胡伟平. 海岸带与地球系统科学研究. 地理科学进展, 1999, 18(4): 346-351. DOI:10.3969/j.issn.1007-6301.1999.04.008
[2] Barbier EB. Marine ecosystem services. Current Biology, 2017, 27(11): R507-R510. DOI:10.1016/j.cub.2017.03.020
[3] Wei L, Wei H. Preliminary study for establishment of China ICZM indicator system. Coastal Engineering, 2009, 28(2): 25-33. (in Chinese)
魏莱, 魏皓. 中国海岸带综合管理指标体系. 海岸工程, 2009, 28(2): 25-33. DOI:10.3969/j.issn.1002-3682.2009.02.003
[4] Liu Y, Ma L, Li Y, Yang Y. Coastal ecosystem and main content of research. Marine Environmental Science, 2008, 27(5): 520-522. (in Chinese)
刘瑀, 马龙, 李颖, 杨洋. 海岸带生态系统及其主要研究内容. 海洋环境科学, 2008, 27(5): 520-522. DOI:10.3969/j.issn.1007-6336.2008.05.029
[5] Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing, 2001.
[6] Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnology and Oceanography, 2013, 58(3): 1035-1047. DOI:10.4319/lo.2013.58.3.1035
[7] Stramma L, Johnson GC, Sprintall J, Mohrholz V. Expanding oxygen-minimum zones in the tropical oceans. Science, 2008, 320(5876): 655-658. DOI:10.1126/science.1153847
[8] Church JA, White NJ. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 2006, 33(1): L01602.
[9] Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF. El Niño in a changing climate. Nature, 2009, 461(7263): 511-514. DOI:10.1038/nature08316
[10] Zheng XW, Guo JM, Song WM, Feng JX, Lin GH. Methane emission from mangrove wetland soils is marginal but can be stimulated significantly by anthropogenic activities. Forests, 2018, 9(12): 738. DOI:10.3390/f9120738
[11] Kim J, Chaudhary DR, Kang H. Nitrogen addition differently alters GHGs production and soil microbial community of tidal salt marsh soil depending on the types of halophyte. Applied Soil Ecology, 2020, 150: 103440. DOI:10.1016/j.apsoil.2019.103440
[12] Li YD, Zheng LP, Zhang Y, Liu HB, Jing HM. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Scientific Reports, 2019, 9(1): 5739. DOI:10.1038/s41598-019-42260-4
[13] Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive earth's biogeochemical cycles. Science, 2008, 320(5879): 1034-1039. DOI:10.1126/science.1153213
[14] National academies of sciences, engineering, medicine. negative emissions technologies and reliable sequestration: a research agenda. Washington: National Academies Press, 2019.
[15] Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 2013, 3(11): 961-968. DOI:10.1038/nclimate1970
[16] Hügler M, Sievert SM. Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Science, 2011, 3: 261-289. DOI:10.1146/annurev-marine-120709-142712
[17] Howarth RW, Marino R, Lane J, Cole JJ. Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnology and Oceanography, 1988, 33(4): 669-687.
[18] Amano T, Yoshinaga I, Yamagishi T, Van Thuoc C, Thu PT, Ueda S, Kato K, Sako Y, Suwa Y. Contribution of anammox bacteria to benthic nitrogen cycling in a mangrove forest and shrimp ponds, Haiphong, Vietnam. Microbes and Environments, 2011, 26(1): 1-6. DOI:10.1264/jsme2.ME10150
[19] Rivera-Monroy VH, Twilley RR. The relative role of denitrification and immobilization in the fate of inorganic nitrogen in mangrove sediments (Terminos Lagoon, Mexico). Limnology and Oceanography, 1996, 41(2): 284-296. DOI:10.4319/lo.1996.41.2.0284
[20] Giblin AE, Tobias CR, Song B, Weston N, Banta GT, Rivera-Monroy VH. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography, 2013, 26(3): 124-131. DOI:10.5670/oceanog.2013.54
[21] Baggs EM. A review of stable isotope techniques for N2O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Communications in Mass Spectrometry, 2008, 22(11): 1664-1672. DOI:10.1002/rcm.3456
[22] Grismer ME, Collison RS. The zeolite-anammox treatment process for nitrogen removal from wastewater-a review. Water, 2017, 9(11): 901. DOI:10.3390/w9110901
[23] Stein LY, Klotz MG. The nitrogen cycle. Current Biology, 2016, 26(3): R94-R98. DOI:10.1016/j.cub.2015.12.021
[24] Huang L, Feng XL, Du QS, Dong XZ, Liu SJ, Wen MZ, Dai X. Focusing on key scientific issues of microbiome research in hydrosphere: NSFC major research plan for microbes in hydrosphere. Bulletin of the Chinese Academy of Sciences, 2017, 32(3): 266-272. (in Chinese)
黄力, 冯雪莲, 杜全生, 东秀珠, 刘双江, 温明章, 戴欣. 水圈微生物重大研究计划: 聚焦水圈微生物组研究的核心科学问题. 中国科学院院刊, 2017, 32(3): 266-272.
[25] Wang XJ, Zhang HB, Han GX. Carbon cycle and "blue carbon" potential in China's coastal zone. Bulletin of the Chinese Academy of Sciences, 2016, 31(10): 1218-1225. (in Chinese)
王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力. 中国科学院院刊, 2016, 31(10): 1218-1225.
[26] Wang Q, Wang CH, Huang SF, Sha CY, Ruan JJ, Wang M. Review on salt marsh plant communities: distribution, succession and impact factors. Ecology and Environmental Sciences, 2012, 21(2): 375-388. (in Chinese)
王卿, 汪承焕, 黄沈发, 沙晨燕, 阮俊杰, 王敏. 盐沼植物群落研究进展: 分布、演替及影响因子. 生态环境学报, 2012, 21(2): 375-388. DOI:10.3969/j.issn.1674-5906.2012.02.030
[27] Liao BW, Zhang QM. Area, distribution and species composition of mangroves in China. Wetland Science, 2014, 12(4): 435-440. (in Chinese)
廖宝文, 张乔民. 中国红树林的分布、面积和树种组成. 湿地科学, 2014, 12(4): 435-440.
[28] 罗敏. 2015年中国海岸带盐沼遥感监测与生态服务价值评估. 浙江大学硕士学位论文, 2019.
[29] Duan XN, Wang XK, Lu F, Ouyang ZY. Carbon sequestration and its potential by wetland ecosystems in China. Acta Ecologica Sinica, 2008, 28(2): 463-469. (in Chinese)
段晓男, 王效科, 逯非, 欧阳志云. 中国湿地生态系统固碳现状和潜力. 生态学报, 2008, 28(2): 463-469. DOI:10.3321/j.issn:1000-0933.2008.02.002
[30] Davidson EA, Janssens IA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 2006, 440(7081): 165-173. DOI:10.1038/nature04514
[31] Laffoley D, Baxter JM. Explaining ocean warming: causes, scale, effects and consequences. Gland, Switzerland: IUCN, 2016.
[32] Neogi SB, Dey M, Kabir SML, Masum SJH, Kopprio G, Yamasaki S, Lara R. Sundarban mangroves: diversity, ecosystem services and climate change impacts. Asian Journal of Medical and Biological Research, 2016, 2(4): 488-507.
[33] Li YL, Wang L, Zhang WQ, Zhang SP, Wang HL, Fu XH, Le YQ. Variability of soil carbon sequestration capability and microbial activity of different types of salt marsh soils at Chongming Dongtan. Ecological Engineering, 2010, 36(12): 1754-1760. DOI:10.1016/j.ecoleng.2010.07.029
[34] Maie N, Pisani O, Jaffé R. Mangrove tannins in aquatic ecosystems: their fate and possible influence on dissolved organic carbon and nitrogen cycling. Limnology and Oceanography, 2008, 53(1): 160-171. DOI:10.4319/lo.2008.53.1.0160
[35] Wang DQ, Chen ZL, Xu SY. Methane emission from Yangtze estuarine wetland, China. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2): G02011.
[36] Yu XL, Yang XQ, Wu YJ, Peng YS, Yang T, Xiao FS, Zhong QP, Xu K, Shu LF, He Q, Tian Y, Yan QY, Wang C, Wu B, He ZL. Sonneratia apetala introduction alters methane cycling microbial communities and increases methane emissions in mangrove ecosystems. Soil Biology and Biochemistry, 2020, 144: 107775. DOI:10.1016/j.soilbio.2020.107775
[37] Soper FM, MacKenzie RA, Sharma S, Cole TG, Litton CM, Sparks JP. Non-native mangroves support carbon storage, sediment carbon burial, and accretion of coastal ecosystems. Global Change Biology, 2019, 25(12): 4315-4326. DOI:10.1111/gcb.14813
[38] Zhou X, Smith H, Silva AG, Belnap J, Garcia-Pichel F. Differential responses of dinitrogen fixation, diazotrophic cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-cycle in biological soil crusts. PLoS One, 2016, 11(10): e0164932. DOI:10.1371/journal.pone.0164932
[39] Jing HM, Xia XM, Liu HB, Zhou Z, Wu C, Nagarajan S. Anthropogenic impact on diazotrophic diversity in the mangrove rhizosphere revealed by nifH pyrosequencing. Frontiers in Microbiology, 2015, 6: 1172.
[40] Rojas A, Holguin G, Glick BR, Bashan Y. Synergism between Phyllobacterium sp. (N2-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiology Ecology, 2001, 35(2): 181-187. DOI:10.1111/j.1574-6941.2001.tb00802.x
[41] Qashqari MS, Garcias-Bonet N, Fusi M, Booth JM, Daffonchio D, Duarte CM. High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments. Estuarine, Coastal and Shelf Science, 2020, 232: 106487. DOI:10.1016/j.ecss.2019.106487
[42] Vovides AG, Bashan Y, López-Portillo JA, Guevara R. Nitrogen fixation in preserved, reforested, naturally regenerated and impaired mangroves as an indicator of functional restoration in mangroves in an arid region of Mexico. Restoration Ecology, 2011, 19(201): 236-244. DOI:10.1111/j.1526-100X.2010.00713.x
[43] Fernandes SO, Bonin PC, Michotey VD, Garcia N, LokaBharathi PA. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium. Scientific Reports, 2012, 2: 419. DOI:10.1038/srep00419
[44] Gao GF, Li PF, Zhong JX, Shen ZJ, Chen J, Li YT, Isabwe A, Zhu XY, Ding QS, Zhang S, Gao CH, Zheng HL. Spartina alterniflora invasion alters soil bacterial communities and enhances soil N2O emissions by stimulating soil denitrification in mangrove wetland. Science of the Total Environment, 2019, 653: 231-240. DOI:10.1016/j.scitotenv.2018.10.277
[45] Brunet RC, Garcia-Gil LJ. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiology Ecology, 1996, 21(2): 131-138. DOI:10.1111/j.1574-6941.1996.tb00340.x
[46] Zhou MH, Butterbach-Bahl K, Vereecken H, Brüggemann N. A meta-analysis of soil salinization effects on nitrogen pools, cycles and fluxes in coastal ecosystems. Global Change Biology, 2017, 23(3): 1338-1352. DOI:10.1111/gcb.13430
[47] Murray RH, Erler DV, Eyre BD. Nitrous oxide fluxes in estuarine environments: response to global change. Global Change Biology, 2015, 21(9): 3219-3245. DOI:10.1111/gcb.12923
[48] Muñoz-Hincapié M, Morell JM, Corredor JE. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Marine Pollution Bulletin, 2002, 44(10): 992-996. DOI:10.1016/S0025-326X(02)00132-7
[49] Wang HT, Gilbert JA, Zhu YG, Yang XR. Salinity is a key factor driving the nitrogen cycling in the mangrove sediment. Science of the Total Environment, 2018, 631-632: 1342-1349. DOI:10.1016/j.scitotenv.2018.03.102
[50] Chen GC, Tam NFY, Ye Y. Does zinc in livestock wastewater reduce nitrous oxide (N2O) emissions from mangrove soils?. Water Research, 2014, 65: 402-413. DOI:10.1016/j.watres.2014.08.003
[51] Kearns PJ, Angell JH, Howard EM, Deegan LA, Stanley RHR, Bowen JL. Nutrient enrichment induces dormancy and decreases diversity of active bacteria in salt marsh sediments. Nature Communications, 2016, 7(1): 12881. DOI:10.1038/ncomms12881
[52] Morris JT, Bradley PM. Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnology and Oceanography, 1999, 44(3): 699-702. DOI:10.4319/lo.1999.44.3.0699
[53] Mueller P, Granse D, Nolte S, Do HT, Weingartner M, Hoth S, Jensen K. Top-down control of carbon sequestration: grazing affects microbial structure and function in salt marsh soils. Ecological Applications, 2017, 27(5): 1435-1450. DOI:10.1002/eap.1534
[54] Whiting GJ, Gandy EL, Yoch DC. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Applied and Environmental Microbiology, 1986, 52(1): 108-113. DOI:10.1128/aem.52.1.108-113.1986
[55] Davis DA, Malone SL, Lovell CR. Responses of salt marsh plant rhizosphere diazotroph assemblages to drought. Microorganisms, 2018, 6(1): 27. DOI:10.3390/microorganisms6010027
[56] Yoch DC, Whiting GJ. Evidence for NH4+ switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alterniflora. Applied and Environmental Microbiology, 1986, 51(1): 143-149. DOI:10.1128/AEM.51.1.143-149.1986
[57] Welsh DT. Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters, 2000, 3(1): 58-71. DOI:10.1046/j.1461-0248.2000.00111.x
[58] Newell SE, Pritchard KR, Foster SQ, Fulweiler RW. Molecular evidence for sediment nitrogen fixation in a temperate New England estuary. PeerJ, 2016, 4(4): e1615.
[59] Huang JX, Xu X, Wang M, Nie M, Qiu SY, Wang Q, Quan ZX, Xiao M, Li B. Responses of soil nitrogen fixation to Spartina alterniflora invasion and nitrogen addition in a Chinese salt marsh. Scientific Reports, 2016, 6(1): 20384. DOI:10.1038/srep20384
[60] Humbert S, Zopfi J, Tarnawski SE. Abundance of anammox bacteria in different wetland soils. Environmental Microbiology Reports, 2012, 4(5): 484-490. DOI:10.1111/j.1758-2229.2012.00347.x
[61] Koop-Jakobsen K, Giblin AE. Anammox in tidal marsh sediments: the role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts, 2009, 32(2): 238-245. DOI:10.1007/s12237-008-9131-y
[62] Tiedje JM, Sexstone AJ, Myrold DD, Robinson JA. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek, 1983, 48(6): 569-583. DOI:10.1007/BF00399542
[63] Peng XF, Ji QX, Angell JH, Kearns PJ, Yang HJ, Bowen JL, Ward BB. Long-term fertilization alters the relative importance of nitrate reduction pathways in salt marsh sediments. Journal of Geophysical Research: Biogeosciences, 2016, 121(8): 2082-2095. DOI:10.1002/2016JG003484
[64] Koop-Jakobsen K, Giblin AE. The effect of increased nitrate loading on nitrate reduction via denitrification and DNRA in salt marsh sediments. Limnology and Oceanography, 2010, 55(2): 789-802. DOI:10.4319/lo.2010.55.2.0789
[65] Tatariw C, Flournoy N, Kleinhuizen AA, Tollette D, Overton EB, Sobecky PA, Mortazavi B. Salt marsh denitrification is impacted by oiling intensity six years after the deepwater horizon oil spill. Environmental Pollution, 2018, 243: 1606-1614. DOI:10.1016/j.envpol.2018.09.034
[66] Marks BM, Chambers L, White JR. Effect of fluctuating salinity on potential denitrification in coastal wetland soil and sediments. Soil Science Society of America Journal, 2016, 80(2): 516-526. DOI:10.2136/sssaj2015.07.0265
[67] Murphy AE, Bulseco AN, Ackerman R, Vineis JH, Bowen JL. Sulphide addition favours respiratory ammonification (DNRA) over complete denitrification and alters the active microbial community in salt marsh sediments. Environmental Microbiology, 2020, 22(6): 2124-2139. DOI:10.1111/1462-2920.14969
[68] Hinshaw SE, Tatariw C, Flournoy N, Kleinhuizen A, Taylor C, Sobecky PA, Mortazavi B. Vegetation loss decreases salt marsh denitrification capacity: implications for marsh erosion. Environmental Science & Technology, 2017, 51(15): 8245-8253.
[69] Bilkovic DM, Mitchell MM, Isdell RE, Schliep M, Smyth AR. Mutualism between ribbed mussels and cordgrass enhances salt marsh nitrogen removal. Ecosphere, 2017, 8(4): e01795.
[70] Yuan JJ, Ding WX, Liu DY, Kang H, Freeman C, Xiang J, Lin YX. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China. Global Change Biology, 2015, 21(4): 1567-1580. DOI:10.1111/gcb.12797
[71] Moseman-Valtierra S, Gonzalez R, Kroeger KD, Tang JW, Chao WC, Crusius J, Bratton J, Green A, Shelton J. Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric Environment, 2011, 45(26): 4390-4397. DOI:10.1016/j.atmosenv.2011.05.046
[72] Yang WH, Silver WL. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape. Global Change Biology, 2016, 22(6): 2228-2237. DOI:10.1111/gcb.13203
[73] Yin GY, Hou LJ, Liu M, Zheng YL, Li XF, Lin XB, Gao J, Jiang XF. Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. Environmental Pollution, 2016, 214: 265-272. DOI:10.1016/j.envpol.2016.04.041
[74] Han QY, Shi P. Progress in the study of seagrass ecology. Acta Ecologica Sinica, 2008, 28(11): 5561-5570. (in Chinese)
韩秋影, 施平. 海草生态学研究进展. 生态学报, 2008, 28(11): 5561-5570. DOI:10.3321/j.issn:1000-0933.2008.11.040
[75] Hamersley MR, Sohm JA, Burns JA, Capone DG. Nitrogen fixation associated with the decomposition of the giant kelp Macrocystis pyrifera. Aquatic Botany, 2015, 125: 57-63. DOI:10.1016/j.aquabot.2015.05.003
[76] Zheng FY, Qiu GL, Fan HQ, Zhang W. Diversity, distribution and conservation of Chinese seagrass species. Biodiversity Science, 2013, 21(5): 517-526. (in Chinese)
郑凤英, 邱广龙, 范航清, 张伟. 中国海草的多样性、分布及保护. 生物多样性, 2013, 21(5): 517-526.
[77] Ding LP, Huang BX, Xie YQ. Advances and problems with the study of marine macroalgae of China seas. Biodiversity Science, 2011, 19(6): 798-804. (in Chinese)
丁兰平, 黄冰心, 谢艳齐. 中国大型海藻的研究现状及其存在的问题. 生物多样性, 2011, 19(6): 798-804.
[78] Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O. Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 2012, 5(7): 505-509. DOI:10.1038/ngeo1477
[79] Trevathan-Tackett SM, Seymour JR, Nielsen DA, Macreadie PI, Jeffries TC, Sanderman J, Baldock J, Howes JM, Steven ADL, Ralph PJ. Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology, 2017, 93(6): fix033.
[80] Zhang HB, Luo YM, Liu XH, Fu CC. Current researches and prospects on the coastal blue carbon. Scientia Sinica Terrae, 2015, 45(11): 1641-1648. (in Chinese)
章海波, 骆永明, 刘兴华, 付传城. 海岸带蓝碳研究及其展望. 中国科学: 地球科学, 2015, 45(11): 1641-1648.
[81] Macreadie PI, Atwood TB, Seymour JR, Fontes MLS, Sanderman J, Nielsen DA, Connolly RM. Vulnerability of seagrass blue carbon to microbial attack following exposure to warming and oxygen. Science of the Total Environment, 2019, 686: 264-275. DOI:10.1016/j.scitotenv.2019.05.462
[82] Arias-Ortiz A, Serrano O, Masqué P, Lavery PS, Mueller U, Kendrick GA, Rozaimi M, Esteban A, Fourqurean JW, Marbà N, Mateo MA, Murray K, Rule MJ, Duarte CM. A marine heatwave drives massive losses from the world's largest seagrass carbon stocks. Nature Climate Change, 2018, 8(4): 338-344. DOI:10.1038/s41558-018-0096-y
[83] Trevathan-Tackett SM, Thomson ACG, Ralph PJ, Macreadie PI. Fresh carbon inputs to seagrass sediments induce variable microbial priming responses. Science of the Total Environment, 2018, 621: 663-669. DOI:10.1016/j.scitotenv.2017.11.193
[84] Lyimo LD, Gullström M, Lyimo TJ, Deyanova D, Dahl M, Hamisi MI, Björk M. Shading and simulated grazing increase the sulphide pool and methane emission in a tropical seagrass meadow. Marine Pollution Bulletin, 2018, 134: 89-93. DOI:10.1016/j.marpolbul.2017.09.005
[85] George R, Gullström M, Mtolera MSP, Lyimo TJ, Björk M. Methane emission and sulfide levels increase in tropical seagrass sediments during temperature stress: a mesocosm experiment. Ecology and Evolution, 2020, 10(4): 1917-1928. DOI:10.1002/ece3.6009
[86] Burkholz C, Garcias-Bonet N, Duarte CM. Warming enhances carbon dioxide and methane fluxes from Red Sea seagrass (Halophila stipulacea) sediments. Biogeosciences, 2020, 17(7): 1717-1730. DOI:10.5194/bg-17-1717-2020
[87] Cole LW, McGlathery KJ. Nitrogen fixation in restored eelgrass meadows. Marine Ecology Progress Series, 2012, 448: 235-246. DOI:10.3354/meps09512
[88] Garcias-Bonet N, Vaquer-Sunyer R, Duarte CM, Marbà N. Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16(1): 167-175. DOI:10.5194/bg-16-167-2019
[89] Moncreiff CA, Sullivan MJ. Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine Ecology Progress Series, 2001, 215: 93-106. DOI:10.3354/meps215093
[90] Porubsky WP, Velasquez LE, Joye SB. Nutrient-replete benthic microalgae as a source of dissolved organic carbon to coastal waters. Estuaries and Coasts, 2008, 31(5): 860-876. DOI:10.1007/s12237-008-9077-0
[91] McGlathery KJ, Sundbäck K, Anderson IC. Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Marine Ecology Progress Series, 2007, 348: 1-18. DOI:10.3354/meps07132
[92] Garcias-Bonet N, Fusi M, Ali M, Shaw DR, Saikaly P, Daffonchio D, Duarte CM. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences, 2018, 15(23): 7333-7346. DOI:10.5194/bg-15-7333-2018
[93] Krause-Jensen D, Lavery P, Serrano O, Marba N, Masque P, Duarte CM. Sequestration of macroalgal carbon: the elephant in the blue carbon room. Biology Letters, 2018, 14(6): 20180236. DOI:10.1098/rsbl.2018.0236
[94] Hill R, Bellgrove A, Macreadie PI, Petrou K, Beardall J, Steven A, Ralph PJ. Can macroalgae contribute to blue carbon? An Australian perspective. Limnology and Oceanography, 2015, 60(5): 1689-1706. DOI:10.1002/lno.10128
[95] Säwström C, Hyndes GA, Eyre BD, Huggett MJ, Fraser MW, Lavery PS, Thomson PG, Tarquinio F, Steinberg PD, Laverock B. Coastal connectivity and spatial subsidy from a microbial perspective. Ecology and Evolution, 2016, 6(18): 6662-6671. DOI:10.1002/ece3.2408
[96] Van Erk MR, Meier DV, Ferdelman T, Harder J, Bussmann I, De Beer D. Kelp deposition changes mineralization pathways and microbial communities in a sandy beach. Limnology and Oceanography, 2020, 65(12): 3066-3084. DOI:10.1002/lno.11574
[97] Krumhansl KA, Okamoto DK, Rassweiler A, Novak M, Bolton JJ, Cavanaugh KC, Connell SD, Johnson CR, Konar B, Ling SD, Micheli F, Norderhaug KM, Pérez-Matus A, Sousa-Pinto I, Reed DC, Salomon AK, Shears NT, Wernberg T, Anderson RJ, Barrett NS, Buschmann AH, Carr MH, Caselle JE, Derrien-Courtel S, Edgar GJ, Edwards M, Estes JA, Goodwin C, Kenner MC, Kushner DJ, Moy FE, Nunn J, Steneck RS, Vásquez J, Watson J, Witman JD, Byrnes JEK. Global patterns of kelp forest change over the past half-century. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13785-13790. DOI:10.1073/pnas.1606102113
[98] Michaels AF, Silver MW. Primary production, sinking fluxes and the microbial food web. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(4): 479-490.
[99] Zlotnik I, Dubinsky Z. The effect of light and temperature on DOC excretion by phytoplankton. Limnology and Oceanography, 1989, 34(5): 831-839. DOI:10.4319/lo.1989.34.5.0831
[100] Sarmento H. New paradigms in tropical limnology: the importance of the microbial food web. Hydrobiologia, 2012, 686(1): 1-14. DOI:10.1007/s10750-012-1011-6
[101] Richardson AJ. In hot water: zooplankton and climate change. ICES Journal of Marine Science, 2008, 65(3): 279-295. DOI:10.1093/icesjms/fsn028
[102] Zhang YY, Huang CX, Yang J, Jiao NZ. Interactions between marine microorganisms and their phages. Chinese Science Bulletin, 2011, 56(14): 1071-1079. (in Chinese)
张永雨, 黄春晓, 杨军, 焦念志. 海洋微生物与噬菌体间的相互关系. 科学通报, 2011, 56(14): 1071-1079.
[103] 何茂求. 南海沉积物中病毒多样性研究. 厦门大学硕士学位论文, 2016.
[104] Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience, 1999, 49(10): 781-788. DOI:10.2307/1313569
[105] Castillo Y, Sebastián M, Forn I, Grimsley N, Yau S, Sà EL, Lara E, Moraru C, Vaqué D. How to visualize the interaction between a virus and its host in a marine environment? 2019.
[106] Yvon-Durocher G, Schaum CE, Trimmer M. The temperature dependence of phytoplankton stoichiometry: investigating the roles of species sorting and local adaptation. Frontiers in Microbiology, 2017, 8: 2003. DOI:10.3389/fmicb.2017.02003
[107] Kaufman DE, Friedrichs MAM, Smith Jr WO, Hofmann EE, Dinniman MS, Hemmings JCP. Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export. Journal of Geophysical Research: Oceans, 2017, 122(3): 2339-2359. DOI:10.1002/2016JC012514
[108] Keys M, Tilstone G, Findlay HS, Widdicombe CE, Lawson T. Effects of elevated CO2 and temperature on phytoplankton community biomass, species composition and photosynthesis during an experimentally induced autumn bloom in the western English Channel. Biogeosciences, 2018, 15(10): 3203-3222. DOI:10.5194/bg-15-3203-2018
[109] Barton AD, Pershing AJ, Litchman E, Record NR, Edwards KF, Finkel ZV, Kiørboe T, Ward BA. The biogeography of marine plankton traits. Ecology Letters, 2013, 16(4): 522-534. DOI:10.1111/ele.12063
[110] De Mazancourt C, Johnson E, Barraclough TG. Biodiversity inhibits species' evolutionary responses to changing environments. Ecology Letters, 2008, 11(4): 380-388. DOI:10.1111/j.1461-0248.2008.01152.x
[111] Jørgensen EG. The adaptation of plankton algae: Ⅱ. Aspects of the temperature adaptation of Skeletonema costatum. Physiologia Plantarum, 1968, 21(2): 423-427. DOI:10.1111/j.1399-3054.1968.tb07266.x
[112] Acevedo-Trejos E, Brandt G, Bruggeman J, Merico A. Mechanisms shaping size structure and functional diversity of phytoplankton communities in the ocean. Scientific Reports, 2015, 5: 8918. DOI:10.1038/srep08918
[113] Svensson F, Norberg J, Snoeijs P. Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change. PLoS One, 2014, 9(10): e109993. DOI:10.1371/journal.pone.0109993
[114] Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research, 2010, 32(1): 119-137. DOI:10.1093/plankt/fbp098
[115] Biggs TEG, Alvarez-Fernandez S, Evans C, Mojica KDA, Rozema PD, Venables HJ, Pond DW, Brussaard CPD. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biology, 2019, 42(11): 1997-2015. DOI:10.1007/s00300-019-02576-3
[116] Dinasquet J, Kragh T, Schrøter ML, Søndergaard M, Riemann L. Functional and compositional succession of bacterioplankton in response to a gradient in bioavailable dissolved organic carbon. Environmental Microbiology, 2013, 15(9): 2616-2628. DOI:10.1111/1462-2920.12178
[117] Lindh MV, Lefébure R, Degerman R, Lundin D, Andersson A, Pinhassi J. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment. AMBIO, 2015, 44(S3): 402-412. DOI:10.1007/s13280-015-0659-3
[118] Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N, Johnson M, Kirchman DL, Koch BP, Legendre L, Li C, Liu J, Luo T, Luo YW, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 2014, 11(19): 5285-5306. DOI:10.5194/bg-11-5285-2014
[119] Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biology, 2010, 33(12): 1683-1694. DOI:10.1007/s00300-010-0808-x
[120] Damm E, Kiene RP, Schwarz J, Falck E, Dieckmann G. Methane cycling in Arctic shelf water and its relationship with phytoplankton biomass and DMSP. Marine Chemistry, 2008, 109(1/2): 45-59.
[121] Karl DM, Tilbrook BD. Production and transport of methane in oceanic particulate organic matter. Nature, 1994, 368(6473): 732-734. DOI:10.1038/368732a0
[122] Sanseverino I, Conduto D, Pozzoli L, Dobricic S, Lettieri T. Algal bloom and its economic impact. European Commission, Joint Research Centre Institute for Environment and Sustainability, 2016.
[123] De Angelis MA, Lee C. Methane production during zooplankton grazing on marine phytoplankton. Limnology and Oceanography, 1994, 39(6): 1298-1308. DOI:10.4319/lo.1994.39.6.1298
[124] Bižić-Ionescu M, Klintzsch T, Ionescu D, Hindiyeh MY, Günthel M, Muro-Pastor AM, Keppler F, Grossart HP. Widespread formation of methane by Cyanobacteria in aquatic and terrestrial environments. bioRxiv, 2018: 398958.
[125] Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Frontiers in Microbiology, 2012, 3: 374.
[126] Geisler E, Bogler A, Bar-Zeev E, Rahav E. Heterotrophic nitrogen fixation at the hyper-eutrophic qishon river and estuary system. Frontiers in Microbiology, 2020, 11: 1370. DOI:10.3389/fmicb.2020.01370
[127] Scavotto RE, Dziallas C, Bentzon-Tilia M, Riemann L, Moisander PH. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean. Environmental Microbiology, 2015, 17(10): 3754-3765. DOI:10.1111/1462-2920.12777
[128] Rees AP, Turk-Kubo KA, Al-Moosawi L, Alliouane S, Gazeau F, Hogan ME, Zehr JP. Ocean acidification impacts on nitrogen fixation in the coastal western Mediterranean Sea. Estuarine, Coastal and Shelf Science, 2017, 186: 45-57. DOI:10.1016/j.ecss.2016.01.020
[129] Hietanen S, Moisander PH, Kuparinen J, Tuominen L. No sign of denitrification in a Baltic Sea cyanobacterial bloom. Marine Ecology Progress Series, 2002, 242: 73-82. DOI:10.3354/meps242073
[130] Kock A, Arévalo-Martínez DL, Löscher CR, Bange HW. Extreme N2O accumulation in the coastal oxygen minimum zone off Peru. Biogeosciences, 2016, 13(3): 827-840. DOI:10.5194/bg-13-827-2016
[131] Xue YY, Yu Z, Chen HH, Yang JR, Liu M, Liu LM, Huang BQ, Yang J. Cyanobacterial bloom significantly boosts hypolimnelic anammox bacterial abundance in a subtropical stratified reservoir. FEMS Microbiology Ecology, 2017, 93(10): fix118.
[132] Chen XF, Yang LY, Xiao L, Miao AJ, Xi BD. Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. Journal of Freshwater Ecology, 2012, 27(2): 243-258. DOI:10.1080/02705060.2011.644405
[133] Jiang XY, Gao G, Zhang L, Tang XM, Shao KQ, Hu Y, Cai J. Role of algal accumulations on the partitioning between N2 production and dissimilatory nitrate reduction to ammonium in eutrophic lakes. Water Research, 2020, 183: 116075. DOI:10.1016/j.watres.2020.116075
[134] Schaefer SC, Hollibaugh JT. Temperature decouples ammonium and nitrite oxidation in coastal waters. Environmental Science & Technology, 2017, 51(6): 3157-3164.
[135] Frame CH, Lau E, Nolan IV EJ, Goepfert TJ, Lehmann MF. Acidification enhances hybrid N2O production associated with aquatic ammonia-oxidizing microorganisms. Frontiers in Microbiology, 2017, 7: 2104.