微生物学报  2021, Vol. 61 Issue (5): 1160-1170   DOI: 10.13343/j.cnki.wsxb.20200423.
http://dx.doi.org/10.13343/j.cnki.wsxb.20200423
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

宁文静, 陈奋天, 罗文新. 2021
Wenjing Ning, Fentian Chen, Wenxin Luo. 2021
免疫检查点抑制剂在慢性乙型肝炎中的研究进展
Immune checkpoint inhibitors in chronic hepatitis B
微生物学报, 61(5): 1160-1170
Acta Microbiologica Sinica, 61(5): 1160-1170

文章历史

收稿日期:2020-07-02
修回日期:2020-10-08
网络出版日期:2021-01-28
免疫检查点抑制剂在慢性乙型肝炎中的研究进展
宁文静 , 陈奋天 , 罗文新     
厦门大学公共卫生学院, 国家传染病诊断试剂与疫苗工程技术研究中心, 福建厦门 361102
摘要:慢性乙型肝炎病毒(hepatitis B virus,HBV)感染仍是全球主要公共卫生问题之一。尽管目前已有预防性疫苗可有效预防新发HBV感染,但全球仍有约2.5亿慢性HBV感染者,其中每年约有100多万人死于HBV相关的慢性肝病,形势仍不容乐观。抗病毒药物(干扰素和核苷类似物等)可抑制病毒复制,降低乙肝相关并发症,但由于其存在耐药性难以达到临床终点。免疫检查点抑制剂作为逆转T细胞耗竭的重要策略,重建有效的功能T细胞反应将是治疗慢性乙肝患者一种有前景的免疫调节方法。本文总结了程序性死亡受体1/细胞程序性死亡-配体1(PD-1/PD-L1)、细胞毒性T淋巴细胞相关蛋白4(CTLA-4)、T细胞免疫球蛋白和ITIM结构域(TIGIT)、T细胞免疫球蛋白和粘蛋白域蛋白-3(Tim-3)、淋巴细胞活化基因-3(lag-3)五种免疫检查点分子的抑制剂在慢性乙型肝炎中的重要研究进展。
关键词慢性乙肝    免疫检查点抑制剂    程序性死亡受体1/细胞程序性死亡-配体1    细胞毒性T淋巴细胞相关蛋白4    
Immune checkpoint inhibitors in chronic hepatitis B
Wenjing Ning , Fentian Chen , Wenxin Luo     
National Research Center for Diagnostic Reagents and Vaccine Engineering Technology of Infectious Diseases, School of Public Health, Xiamen University, Xiamen 361102, Fujian Province, China
Abstract: Chronic hepatitis B virus (HBV) infection remains a significant worldwide medical problem. Despite the availability of an effective prophylactic vaccine, an estimated 250 million individuals worldwide are chronically infected. Chronic infection leads to over 1 million deaths annually. Currently, interferon-alpha (IFN-α) and nucleoside/nucleotide analogues drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons, but it is difficult to achieve the ideal clinical treatment endpoint. Immune checkpoint inhibitors are an important strategy for reversing T cell exhaustion, that aims at reinvigorating dysfunctional T cells represents a promising approach to induce a functional cure of a chronic infection. In this review, we summarize the recent advances in immune checkpoint inhibitors of programmed death receptor 1/cell programmed death ligand 1 (PD-1/PD-L1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T-cell immunoglobulin and ITIM domin (TIGIT), T-cell immunoglobulin and mucin domin protein-3 (Tim-3), and lymphocyte activation gene-3 (Lag-3) in chronic hepatitis B.
Keywords: chronic hepatitis B    immune checkpoint inhibitor    programmed death receptor 1/cell programmed death ligand 1    cytotoxic T-lymphocyte-associated protein 4    

乙型肝炎病毒(hepatitis B virus,HBV)属于嗜肝DNA病毒科、正嗜肝DNA病毒属,是引起乙型肝炎的病原体。HBV感染是全球性的公共卫生问题,严重威胁人类健康。据统计,全球有2.5亿左右慢性HBV感染者。慢性HBV感染的潜在并发症包括肝硬化、肝功能衰竭和肝细胞癌(hepatocellular carcinoma,HCC),在慢性HBV携带者中发生的几率为15%–40%[1],其中80%以上的HCC病例是由HBV感染导致的。HBV相关的慢性肝病每年导致100多万人死亡。

治疗慢性乙型肝炎的关键点在于抗病毒治疗,通过抑制HBV复制以减少机体肝细胞炎症坏死,从而减少肝硬化和HCC等进程性反应。目前临床上使用的药物包括干扰素(IFN)和核苷(酸)类似物(NAs),但前者有效率仅为10%–30%且副作用大[2],后者疗效短暂,需长期服用并易产生耐药性。且两者均难以达到理想的临床终点:HBsAg阴转或血清学转换。因此,研究者们一直在探索治疗慢性乙肝的新方案,比如免疫激活剂、治疗性疫苗、免疫检查点抑制剂等,以求达到更好的治疗效果。

免疫检查点(immune checkpoint)(又称“共抑制受体”),是免疫系统中起抑制作用的调节分子,在维持免疫稳态方面起着关键作用。其对T细胞活化具有正调节和负调节作用。免疫检查点分子在调节自身免疫性疾病、慢性病毒感染及肿瘤治疗中起着重要作用[3-4]。这些受体高表达并在临床上用作改善抗肿瘤和抗病毒T细胞反应的治疗性靶标[5]。如今位于免疫疗法前沿的免疫检查点阻断剂对于人类很多肿瘤,尤其是恶性且化学药物耐受性肿瘤的治疗上有着明显的效果。此外,检查点抑制剂在感染性疾病的治疗中也取得重大突破,尽管它们的疗效因病原体、细胞或器官特异性因素而异[6]

目前针对免疫检查点分子CTLA-4和PD-1的免疫疗法效果非常显著,均有相应药物或单抗上市(Ipilimumab、Opdivo和Keytruda),且适应症较多(包括几种癌症适应症和某些慢性病毒感染),但是仍然有许多患者对这些治疗方法没有阳性反应,这促使人们对其它免疫检查点的靶向进行了深入研究,以扩大治疗范围,其中,lag-3、Tim-3和TIGIT等分子作为新兴免疫检查点将有希望应用于临床下一代[7]。本文将综述PD-1/PD-L1、CTLA-4、TIGIT、Tim-3、lag-3五种免疫检查点分子分别在慢性乙肝病毒感染中的重要研究进展,虽然大部分研究还处于基础研究阶段,但希望可以为目前正聚焦于免疫检查点在感染性疾病方面研究的研究者提供一定的参考(表 1)。

表 1. 五种免疫检查点分子的基本信息 Table 1. Basic information of five immune checkpoint molecules
Molecules Full name Expression Ligands ClinicalTrials
PD-1 Programmed death receptor 1 T、B、NK and activated monocytes, etc PD-L1/PD-L2 Yes
CTLA-4 Cytotoxic T lymphocyte-associated protein 4 T cell surface (mainly CD4+ T cells) CD80 and CD86 Yes
TIGIT T cell immunoglobulin and ITIM domains Activated T cells、memory T cells、Treg cells and follicular T helper cells CD155(PVR)and CD112(PVRL2;nectin-2) No
Tim-3 T cell immunoglobulin and mucin domain 3 NK cells、macrophages、regulatory T cells、cytotoxic T lymphocytes、myeloid cells and mast cells, etc Gal-9、PtdSer、CEACAM1、HMGB1 No
lag-3 Lymphocyte activation gene -3 NK、B、activated T cells and plasmacytoid dendritic cells FGL1 No

1 针对PD-1/PD-L1靶点的应用

程序性死亡受体-1 (PD-1)是一种在T、B、NK和活化单核细胞等免疫细胞中优先表达的I型跨膜蛋白[8],属于CD28超家族。靶向PD-1的免疫调节在抗肿瘤、抗感染、抗自身免疫疾病及器官移植存活等方面都有着重要意义。它的配体PD-L1是大小为40 kDa的I型跨膜蛋白,为抗原提呈共刺激/共抑制分子B7家族的成员,在包括大部分肿瘤细胞和一些宿主细胞中表达。PD-L1也可以用作慢性感染性疾病的治疗靶标[9]。在正常情况下,免疫系统会对在淋巴结或脾脏中积累的外来抗原产生反应,从而产生特异性的T细胞。此时,如果PD-1与PD-L1结合,它将产生抑制信号,使T细胞免疫效应降低。也就是说,PD-1/PD-L1信号通路激活在T细胞活化、增殖和细胞因子分泌中起负调控作用[10]

慢性乙型肝炎的特点是对感染肝细胞的免疫反应波动,导致肝组织炎症和病毒持续复制。PD-1/PD-L1的上调与肝脏炎症和ALT水平及病毒载量等密切相关[11]。此外,适当上调PD-L1在慢性乙型肝炎活动性期的表达,但不过度表达,以及降低PD-L1在肝脏内抗原提呈细胞(包括库普弗细胞和窦状内皮细胞)非活动性期的表达,可能有助于抑制病毒的复制。数据表明,PD-1和PD-L1的肝内相互作用可能在平衡HBV免疫应答和慢性HBV感染免疫介导的肝损伤中发挥重要作用。然而,PD-1/PD-L1是否与慢性HBV感染引起肝损伤有关尚未明确[12]。阻断抑制性受体PD-1、CTLA-4、2B4和Tim-3可在体外改善HBV特异性CD8+ T细胞功能。结果显示PD-1的表达占主导地位,PD-1阻断抑制性在恢复T细胞功能上表现出显著疗效[13-17]

在HBV持续感染小鼠模型中,CD8+ T细胞和CD4+ T细胞PD-1表达水平升高,而PD-1单克隆抗体阻断PD-1/PD-L1信号通路后,肝内HBV特异性T淋巴细胞分泌IFN-γ的能力得到提升,恢复调节性T细胞(Treg)功能,有效降低模型小鼠中HBV载量,提示PD-1单克隆抗体可能是应对HBV持续感染的新型潜在免疫疗法[18]。另有研究开发了一种双重染色方法,利用荧光染料标记HBsAg和HBcAg特异性地离体检测HBsAg和HBcAg特异性B细胞,研究人员发现在慢性乙型肝炎患者中,HBcAg特异性B细胞的表达频率高于HBsAg特异性B细胞,且血清中HBsAg的存在会影响HBsAg特异性B细胞的功能和表型,并表现出PD-1表达增加,但是功能失调的HBsAg特异性B细胞可以通过使B细胞成熟的细胞因子和PD1抗体获得部分缓解,这一发现使PD1抗体为慢性乙型肝炎患者的功能性治愈开辟了新疗法的可能[19]

有研究使用土拨鼠肝炎病毒(WHV)感染模型,在其体内阻断PD-1/PD-L1通路,并联合抗病毒药物和DNA疫苗策略,发现PD1抗体、恩替卡韦联合DNA疫苗,可协同增强病毒特异性CD8+T细胞的功能,使部分土拨鼠实现了病毒的清除。这种新的三联疗法可能对慢性乙型肝炎患者的免疫治疗策略设计提供了帮助[20]。然而,本研究并没有探讨抗PD-L1治疗的疗效可能是通过增强疫苗诱导的免疫介导的。在接受恩替卡韦治疗的WHV感染模型的另一项研究中发现,PD-L1单克隆抗体阻止了恩替卡韦治疗后病毒的反弹[21]。通过联合共刺激分子OX40并阻断PD-1通路,可以增强HBV特异性CD4+ T细胞的效应,分泌细胞因子IFN-γ、IL-21的能力较单独作用于两靶点显著增强,表明OX40与PD-1靶点的联合免疫治疗方法可有效改善HBV特异性CD4+ T细胞应答[22]

一项试验研究中,接受Nivolumab (一种PD-1抑制剂),使用或不使用GS-4774 (一种HBV治疗性疫苗)的HBeAg阴性的CHB患者中,检查点阻断耐受性良好,导致大多数患者HBsAg下降,并使1例患者HBsAg持续消失,试验中未出现3-4级毒性反应,证明了PD-1抑制剂Nivolumab是安全有效的CHB病毒抑制剂[23]。对于HCC患者,在一项1/2期Nivolumab剂量递增试验研究中,Nivolumab可显著降低肿瘤发生率,对晚期HCC治疗时,相比于其他疗法,Nivolumab能提供现有持久的治疗效应,具有可控的安全性。目前正在对Nivolumab和Sorafenib在晚期肝癌的首次治疗疗效进行三期随机对照临床试验(NCT02576509)[24]。HLX10是靶向PD-1的人源化单克隆抗体,目前正在进行二期临床试验(NCT04133259),旨在评估其在CHB患者中的安全性和有效性(表 2)。

表 2. 靶向PD-1与CTLA-4抑制剂的临床在研阶段 Table 2. Clinical trial phase of PD-1 and CTLA-4 inhibitors
Molecules Drug Names Clinical Trials. gov identifier Stage of clinical development
PD-1 1. Nivolumab and Sorafenib
2. Humanized monoclonal antibody: HLX10
NCT02576509
NCT04133259

CTLA-4 1. Ipilimumab and Nivolumab
2. Durvalumab and tremelimumab
3. Tremelimumab
NCT01658878
NCT02519348
NCT01008358
Ⅰ/Ⅱ

Data from ClinicalTrials.

值得注意的是,PD-1阻断的积极作用与中间T细胞的分化有关[25]。对地中海人群中PD-1 rs10204525 (一个位于PD-1 3’未翻译区的单核苷酸,具有多态性)研究发现,PD-1 AA基因型对HBV感染具有保护作用。GG和GA基因型PD-1 mRNA表达水平更高,可能更容易发展成慢性HBV感染。这种多态性可能为选择适合长期抗病毒治疗的患者提供一种新的、敏感的生物标志物,同时也为新的免疫治疗方法提供了一个有希望的靶点。同时研究发现,在地中海和远东地区,A等位基因和G等位基因功能上存在差异,凸显了遥远的地质人类学背景下遗传结构的差异,这可能是一个比之前认为的更值得关注的话题[26]

2 针对CTLA-4靶点的应用

细胞毒性T淋巴细胞相关蛋白4 (CTLA-4)是T细胞上的跨膜受体,与CD28共同享有B7分子配体(CD80和CD86)。作为免疫检查点起作用并下调免疫反应,其对CD4+ T细胞的激活和免疫反应的启动阶段至关重要。CTLA-4在活化的T细胞上表达,并将抑制信号传递给T细胞[27]。CTLA-4以比CD28更强的亲和力结合抗原递呈细胞表面上的CD80和CD86,CTLA-4向T细胞传递抑制信号,CD28传递刺激信号。CTLA-4进一步抑制TCR活性降低T细胞对抗原呈递的易感性[28]。CTLA-4的负调节功能可以阻止不受控制的T细胞活化和增殖,是诱导移植排斥反应和自身免疫耐受的关键[29]

抗HBs中和抗体的产生对循环和肝内HBV清除至关重要,在HBV感染小鼠和慢性HBV感染患者血液研究中发现,在HBV存续期间,滤泡T细胞(Tfh细胞)依赖性抗HBs反应的失调是抑制性的Foxp3+调节T细胞(Treg细胞)介导的。利用CTLA-4中和抗体ipilimumab (一种人源化抗CTLA-4抗体)抑制Treg细胞活性,恢复了Tfh细胞清除HBV感染的能力,故推测CTLA-4抗体在慢性HBV感染患者的治疗中具有很大的潜力[30], 同时ipilimumab与抗PD-1/PD-L1靶点抗体Nivolumab联合用药治疗肝细胞癌正在进行1/2期临床实验(NCT01658878)。一项评估durvalumab (PD-L1抑制剂)和tremelimumab (一种完全人源IgG2单抗;CTLA-4抑制剂)联合应用的二期临床试验正在进行,用以靶向治疗肝细胞癌(HCC) (NCT02519348)[31]。在另一项针对中晚期肝癌和HCV感染的二期临床试验中,tremelimumab通过阻断CTLA-4的免疫抑制效果,实现了76.4%的显著疾病控制率,近一半(45%)的稳定持续时间超过6个月(NCT01008358)。与抗PD-1/PD-L1治疗相比,抗CTLA-4抗体由于其高毒性限制了其在临床的应用,使其不能充分发挥治疗潜力,因此只能在较低的剂量和较短的时间内被使用。随着安全性和疗效的提高,患者可能需要耐受更高的剂量[32-33](表 2)。

此外,CTLA-4基因中的单核苷酸多态性(SNPs)可能与HBV的进展和病毒的持久性有关,在一项病例对照研究中,CTLA-4中rs231775和rs3087243位点的A等位基因被证实与中国汉族人群的HBV进展显著相关,rs5742909位点的T等位基因对病毒的持续性有很强的风险作用。虽然HBV疾病并不完全由遗传因素决定,但实验结果为进一步研究CTLA-4基因变异预防和治疗慢性HBV感染提供了基础[34]

3 针对TIGIT靶点的应用

T细胞免疫球蛋白和ITIM结构域(TIGIT)是Ig超级家族的受体CD28家族的新成员。它在免疫细胞中特异性表达,是一种协同抑制受体[35]。TIGIT不仅在活化的T细胞中表达,而且在NK细胞、记忆T细胞、Treg细胞和滤泡性T辅助细胞中表达[36]。TIGIT与两种配体CD155(PVR)和CD112 (PVRL2,nectin-2)结合,这些配体在包括APC、T细胞和肿瘤细胞在内的多种非造血细胞类型中表达。但是,TIGIT对CD155的亲和力比CD112高[37]。而且TIGIT与CD112的相互作用在介导抑制功能方面是否具有功能相关性仍有待研究。

田志刚院士团队研究发现,HBV转基因小鼠肝脏高表达TIGIT,通过连续阻断小鼠体内的TIGIT抑制性通路,可使小鼠产生慢性肝炎,在此基础上再对小鼠进行HBV表面抗原疫苗免疫,小鼠会进一步发展为肝癌。深入机制后发现:阻断HBV转基因小鼠的TIGIT抑制性通路,小鼠肝脏中CD8+T细胞数目增多,活化增强,并出现抗原特异性CTLs。通过清除CD8+T细胞的HBV转基因小鼠,阻断TIGIT通路后其肝损伤明显减轻,并且不会发展为肝癌。综上所述,该研究不仅成功建立了一个由慢性HBV感染导致的肝癌小鼠模型,为HBV相关性肝癌的科研研究提供了更合适的动物平台,而且发现了TIGIT抑制性通路可以维持HBV转基因小鼠体内CD8+T细胞的耐受[38]

有研究分析乙肝病毒相关性肝细胞癌(HBV-HCC)患者的外周血,发现相对于HBV慢性感染者和HBV肝硬化者,HBV-HCC患者的CD4+/CD8+ T细胞上的PD-1和TIGIT共抑制受体表达量显著上升,PD-1+TIGIT+CD8+T细胞数量在晚期和进展的HBV-HCC患者中升高,且与总生存率和无进展生存率呈负相关。因此,HBV-HCC的发病机制和进展与PD-1+ TIGIT+ CD8+ T细胞的增加有关,为HBV-HCC患者免疫治疗提供新的思路,可提高生存率、改善HBV-HCC晚期患者的预后情况[39]

4 针对Tim-3靶点的研究进展

T细胞免疫球蛋白和粘蛋白域蛋白3 (Tim-3)是一种跨膜糖蛋白,也是一个重要的免疫检查点[40],表达于终末分化的Th1细胞表面,属于Tim家族免疫调节蛋白的一员。Tim家族包括鼠类8个成员(Tim1–8)和人类3个成员(Tim1、Tim-3、Tim-4),并且所有成员分子结构类似:N-末端IgV结构域、粘蛋白结构域、跨膜结构域和胞质尾部[41]。Tim-3有多种不同的配体[半乳糖凝集素9 (Gal-9)、磷脂酰丝氨酸(PtdSer)、CEA相关细胞黏附分子1 (CEACAM1)和高迁移率群蛋白B1 (HMGB1)]。

在慢性HBV感染中,Tim-3最初被认为表达于CD4+/CD8+T细胞表面[42],后也被证明大量表达于NK细胞[43]、巨噬细胞、调节性T细胞[44]、细胞毒性T淋巴细胞、髓样细胞[45]和肥大细胞等免疫细胞中,正是Tim-3在众多免疫细胞中的过表达,造成免疫细胞或免疫系统功能受损,因此通过抑制Tim-3免疫检查点可能对恢复机体免疫功能、抑制HBV病毒复制有积极作用。

研究证明,在慢性HBV感染过程中,Tim-3在恒定自然杀伤细胞(iNKT)[46]、CD3+CD16/CD56+自然杀伤样T细胞(NKT-like)和单核细胞中表达量会显著增加,且与ALT水平呈正相关[47],阻断Tim-3会显著增加IL-4、TNF-α、IFN-γ等炎症因子的表达,并明显改善iNKT细胞功能及抑制HBV的复制[46]。另也有研究表明Tim-3+ CD8+ T细胞相较于Tim-3- CD8+T细胞增殖能力受限,且分泌细胞因子能力较弱,使用Tim-3抗体或TIM-3短发夹RNAs后,CD8+ T细胞活性大大恢复,增殖能力与细胞因子分泌能力明显提高[48]。该现象在HBV-HCC患者中也有体现,研究证明HBV-HCC患者的肿瘤浸润淋巴细胞(TILs)中的CD4+/CD8+ T细胞表达Tim-3和PD-1显著增加,TILs分泌各类干扰素和TNF-α的能力被极大限制,通过阻断Tim-3和PD-1抑制通路可大大改善TILs分泌细胞因子的功能,恢复其抗肿瘤作用。这也提示Tim-3和PD-1在HBV-HCC患者免疫治疗中的靶点潜力[49]。这些研究均提示Tim-3可能是抑制慢性HBV感染的潜力靶点。α-Galcer联合TIM-3阻断剂可有效降低血清HBV DNA、HBsAg水平和肝组织pgRNA表达,因此该联合疗法可能是针对慢性HBV感染有希望的一种方案[46]

5 针对lag-3靶点的研究进展

淋巴细胞活化基因-3 (lag-3, 又称CD223)同样也是一种重要的共抑制分子,属于免疫球蛋白超家族。其结构与CD4受体类似,表达于NK细胞、B细胞、活化T细胞以及浆细胞样树突状细胞等细胞中。针对该检查点的抗体不仅可以激活效应T细胞,同时可以抑制调节T细胞的活性[7],是一种非常有前景的免疫检查点。目前该免疫检查点在癌症领域已有很多在研抗体和疗法,但在HBV慢性感染研究中还处于基础的机制探索阶段。

FGL1是lag-3的主要配体(在此之前普遍认为MHC-II类分子是lag-3的主要配体),通过受体-配体相结合的方式发挥抑制T细胞的功能,单克隆抗体阻断FGL1和lag-3的相互作用可以恢复T细胞活性[50]。与无症状和正常组相比,免疫激活期的慢乙肝患者CD8+T细胞中lag-3的表达水平明显升高,CD8+T细胞的功能被抑制,IFN-γ分泌量显著减少[51]。类似的情况也出现在CD4+ T细胞:慢乙肝患者CD4+T细胞高表达PD-1和lag-3, IFN-γ、IL-2和TNF-α等细胞因子分泌能力明显下降,阻断PD-1和lag-3通路后可部分恢复以上衰竭性T细胞的功能[52]

有研究人员检测了HBV自然感染过程各个阶段的lag-3表达水平和各类肝炎指标(包括ALT、HBeAg、HBV DNA)的关系,发现:(1) 免疫耐受期,lag3+ CD8+ T细胞的含量显著高于免疫清除期和低复制期;(2) 免疫耐受期,外周血中lag3+ CD8+/CD4+ T细胞的数量与血清HbeAg呈正相关;(3) 免疫清除期,外周血中lag3+ CD8+/CD4+ T细胞的含量与血清ALT呈负相关;(4) 外周血中lag3+ CD4+/CD8+ T细胞含量与HBV DNA拷贝量无相关性。且推测lag-3免疫抑制分子可能是影响CD8+ T细胞的功能作用[53]。在另一项研究HBV特异性CD8+ T细胞对HCC患者的功能调控作用中,与外周血相比,lag-3在HCC患者的肿瘤浸润CD8+ T淋巴细胞中表达较高,并证实CD8+ T细胞功能严重受损,同样分析推测该现象与lag-3的高表达相关[54]

6 总结和展望

抑制性T细胞受体在慢性乙肝患者体内的高表达,显著抑制了T细胞的效应功能[55]。免疫检查点抑制剂作为逆转T细胞耗竭的重要策略,重建有效的功能T细胞反应将是治疗慢性乙肝患者一种有前景的免疫调节方法。其中,PD-1抑制剂Nivolumab及人源化单克隆抗体HLX10是作为安全有效的CHB病毒抑制剂,已显示出良好的检查点阻断效果;CTLA-4中和抗体ipilimumab和tremelimumab也显示出较大的治疗潜力;联合疗法也显示出好的前景,联合疗法包括多个抑制受体同时被阻断,也可将现有药物与共抑制受体抗体联合应用,甚至可用核苷酸类似物、DNA疫苗和共抑制受体抗体进行三联疗法等;此外,田志刚院士已成功建立了由慢性HBV感染导致的肝癌小鼠模型,为后续深入研究HBV相关肝癌的预防和治疗提供了合适的动物平台。

另外也有研究者站在不同的角度,他们认为T细胞被抑制可能是由活跃的肝损伤引起的,即免疫抑制分子的表达水平增加是一种负反馈调节机制,旨在抑制T细胞功能,缓解肝脏损伤。所以CD8+ T细胞功能受限受损可能有双重性:一方面机体免疫功能被抑制,缓解了肝脏损伤的严重度及损伤范围,避免了暴发性乙型肝炎的发生;另一方面延长了HBV感染的时间,最终发展成为慢性乙肝感染。可见两者间的平衡很难维持,如果探明了慢性HBV这复杂的免疫应答机制,控制好两者间的平衡将对HBV患者的治疗有很大益处[51]

此外,目前免疫检查点抑制剂在慢性乙肝感染方面的使用安全性还需要进一步的研究探索。虽然免疫检查点抑制剂可以通过阻断免疫细胞或肝脏细胞上的负调控免疫检查分子来恢复T细胞效应功能,但该过程常会引起免疫相关不良反应(IrAEs)[56]。IrAEs的发生原因尚未确知,且没有最佳的治疗方案,最常累及胃肠道[57]、皮肤[58]、内分泌系统[59]、肾脏等器官。目前关于IrAEs在慢性乙肝感染领域的研究少之又少,随着检查点抑制剂在慢性乙肝领域的研究逐渐成熟,发现和管理IrAEs是一场必不可少的行动。

References
[1] Lok AS, Heathcote EJ, Hoofnagle JH. Management of hepatitis B: 2000—summary of a workshop. Gastroenterology, 2001, 120(7): 1828-1853.
[2] Lok AS, Zoulim F, Locarnini S, Bartholomeusz A, Ghany MG, Pawlotsky JM, Liaw YF, Mizokami M, Kuiken C, Hepatitis B virus drug resistance working group. Antiviral drug-resistant HBV: standardization of nomenclature and assays and recommendations for management. Hepatology, 2007, 46(1): 254-265. DOI:10.1002/hep.21698
[3] Zamani MR, Aslani S, Salmaninejad A, Javan MR, Rezaei N. PD-1/PD-L and autoimmunity: a growing relationship. Cellular Immunology, 2016, 310: 27-41. DOI:10.1016/j.cellimm.2016.09.009
[4] Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NRJ, Lanier LL. Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity, 2014, 40(2): 225-234.
[5] Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity, 2016, 44(5): 1069-1078. DOI:10.1016/j.immuni.2016.04.023
[6] Abers MS, Lionakis MS, Kontoyiannis DP. Checkpoint inhibition and infectious diseases: a good thing?. Trends in Molecular Medicine, 2019, 25(12): 1080-1093. DOI:10.1016/j.molmed.2019.08.004
[7] Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity, 2016, 44(5): 989-1004. DOI:10.1016/j.immuni.2016.05.001
[8] Arasanz H, Gato-Cañas M, Zuazo M, Ibañez-Vea M, Breckpot K, Kochan G, Escors D. PD-1 signal transduction pathways in T cells. Oncotarget, 2017, 8(31): 51936-51945. DOI:10.18632/oncotarget.17232
[9] Zheng JW, Yuan Q, Xia NS. Novel potential treatments for chronic hepatitis B virus infections. Acta Microbiologica Sinica, 2019, 59(8): 1437-1451. (in Chinese)
郑金伟, 袁权, 夏宁邵. 慢性乙型肝炎潜在治疗靶点和新药研发进展. 微生物学报, 2019, 59(8): 1437-1451.
[10] Ferrando-Martinez S, Huang K, Bennett AS, Sterba P, Yu L, Suzich JA, Janssen HLA, Robbins SH. HBeAg seroconversion is associated with a more effective PD-L1 blockade during chronic hepatitis B infection. JHEP Reports, 2019, 1(3): 170-178. DOI:10.1016/j.jhepr.2019.06.001
[11] Germanidis G, Argentou N, Hytiroglou P, Vassiliadis T, Patsiaoura K, Germenis AE, Speletas M. Liver FOXP3 and PD1/PDL1 expression is down-regulated in chronic HBV hepatitis on maintained remission related to the degree of inflammation. Frontiers in Immunology, 2013, 4: 207.
[12] Xie ZY, Chen YW, Zhao ST, Yang ZQ, Yao XH, Guo S, Yang CY, Fei L, Zeng XG, Ni B, Wu YZ. Intrahepatic PD-1/PD-L1 up-regulation closely correlates with inflammation and virus replication in patients with chronic HBV infection. Immunological Investigations, 2009, 38(7): 624-638. DOI:10.1080/08820130903062210
[13] Raziorrouh B, Schraut W, Gerlach T, Nowack D, Grüner NH, Ulsenheimer A, Zachoval R, Wächtler M, Spannagl M, Haas J, Diepolder HM, Jung MC. The immunoregulatory role of CD244 in chronic hepatitis B infection and its inhibitory potential on virus-specific CD8+ T-cell function. Hepatology, 2010, 52(6): 1934-1947. DOI:10.1002/hep.23936
[14] Isogawa M, Furuichi Y, Chisari FV. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity, 2005, 23(1): 53-63. DOI:10.1016/j.immuni.2005.05.005
[15] Wu W, Shi Y, Li SP, Zhang Y, Liu YN, Wu YH, Chen Z. Blockade of Tim-3 signaling restores the virus-specific CD8+T-cell response in patients with chronic hepatitis B. European Journal of Immunology, 2012, 42(5): 1180-1191. DOI:10.1002/eji.201141852
[16] Schurich A, Khanna P, Lopes AR, Han KJ, Peppa D, Micco L, Nebbia G, Kennedy PTF, Geretti AM, Dusheiko G, Maini MK. Role of the coinhibitory receptor cytotoxic T lymphocyte antigen-4 on apoptosis‐prone CD8 T cells in persistent hepatitis B virus infection. Hepatology, 2011, 53(5): 1494-1503. DOI:10.1002/hep.24249
[17] Maier H, Isogawa M, Freeman GJ, Chisari FV. PD-1: PD-L1 interactions contribute to the functional suppression of virus-specific CD8+ T lymphocytes in the liver. The Journal of Immunology, 2007, 178(5): 2714-2720. DOI:10.4049/jimmunol.178.5.2714
[18] Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen LP, Chen PJ, Hsu PN. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One, 2012, 7(6): e39179. DOI:10.1371/journal.pone.0039179
[19] Salimzadeh L, Bert N L, Dutertre CA, Gill US, Newell EW, Frey C, Hung M, Novikov N, Fletcher S, Kennedy PTF, Bertoletti A. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. The Journal of Clinical Investigation, 2018, 128(10): 4573-4587. DOI:10.1172/JCI121957
[20] Liu J, Zhang EJ, Ma ZY, Wu WM, Kosinska A, Zhang XY, Möller I, Seiz P, Glebe D, Wang BJ, Yang DL, Lu MJ, Roggendorf M. Enhancing virus-specific immunity in vivo by combining therapeutic vaccination and PD-L1 blockade in chronic hepadnaviral infection. PLoS Pathogens, 2014, 10(1): e1003856. DOI:10.1371/journal.ppat.1003856
[21] Balsitis S, Gali V, Mason PJ, Chaniewski S, Levine SM, Wichroski MJ, Feulner M, Song YL, Granaldi K, Loy JK, Thompson CM, Lesniak JA, Brockus C, Kishnani N, Menne S, Cockett MI, Iyer R, Mason SW, Tenney DJ. Safety and efficacy of anti-PD-L1 therapy in the woodchuck model of HBV infection. PLoS One, 2018, 13(2): e0190058. DOI:10.1371/journal.pone.0190058
[22] Jacobi FJ, Wild K, Smits M, Zoldan K, Csernalabics B, Flecken T, Lang J, Ehrenmann P, Emmerich F, Hofmann M, Thimme R, Neumann-Haefelin C, Boettler T. OX40 stimulation and PD-L1 blockade synergistically augment HBV-specific CD4 T cells in patients with HBeAg-negative infection. Journal of Hepatology, 2019, 70(6): 1103-1113. DOI:10.1016/j.jhep.2019.02.016
[23] Gane E, Verdon DJ, Brooks AE, Gaggar A, Nguyen AH, Subramanian GM, Schwabe C, Dunbar PR. Anti-PD-1 blockade with nivolumab with and without therapeutic vaccination for virally suppressed chronic hepatitis B: a pilot study. Journal of Hepatology, 2019, 71(5): 900-907. DOI:10.1016/j.jhep.2019.06.028
[24] El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling Ⅲ TH, Meyer T, Kang YK, Yeo W, Chopra A, Anderson J, dela Cruz C, Lang LX, Neely J, Tang H, Dastani HB, Melero I. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. The Lancet, 2017, 389(10088): 2492-2502. DOI:10.1016/S0140-6736(17)31046-2
[25] Bengsch B, Martin B, Thimme R. Restoration of HBV-specific CD8+ T cell function by PD-1 blockade in inactive carrier patients is linked to T cell differentiation. Journal of Hepatology, 2014, 61(6): 1212-1219. DOI:10.1016/j.jhep.2014.07.005
[26] Chihab H, Jadid FZ, Foka P, Zaidane I, Fihry RE, Georgopoulou U, Marchio A, Elhabazi A, Chair M, Pineau P, Ezzikouri S, Benjelloun S. Programmed cell death-1 3'-untranslated region polymorphism is associated with spontaneous clearance of hepatitis B virus infection. Journal of Medical Virology, 2018, 90(11): 1730-1738. DOI:10.1002/jmv.25265
[27] Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): a versatile receptor for immune-based therapy. Seminars in Immunology, 2019, 42: 101298. DOI:10.1016/j.smim.2019.101298
[28] Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJM, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbé C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 2010, 363(8): 711-723. DOI:10.1056/NEJMoa1003466
[29] Hwang KW, Sweatt WB, Mashayekhi M, Palucki DA, Sattar H, Chuang E, Alegre ML. Transgenic expression of CTLA-4 controls lymphoproliferation in IL-2-Deficient mice. The Journal of Immunology, 2004, 173(9): 5415-5424. DOI:10.4049/jimmunol.173.9.5415
[30] Wang XW, Dong QY, Li Q, Li YY, Zhao DY, Sun JJ, Fu JL, Meng FP, Lin H, Luan JJ, Liu B, Wang M, Wang FS, He FC, Tang L. Dysregulated response of follicular helper T cells to hepatitis B surface antigen promotes HBV persistence in mice and associates with outcomes of patients. Gastroenterology, 2018, 154(8): 2222-2236. DOI:10.1053/j.gastro.2018.03.021
[31] Greten TF, Sangro B. Targets for immunotherapy of liver cancer. Journal of Hepatology, 2018, 68(1): 157-166. DOI:10.1016/j.jhep.2017.09.007
[32] Liu Y, Zheng P. Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends in Pharmacological Sciences, 2020, 41(1): 4-12. DOI:10.1016/j.tips.2019.11.003
[33] Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, Ferrucci PF, Hill A, Wagstaff J, Carlino MS, Haanen JB, Maio M, Marquez-Rodas I, McArthur GA, Ascierto PA, Long GV, Callahan MK, Postow MA, Grossmann K, Sznol M, Dreno B, Bastholt L, Yang A, Rollin LM, Horak C, Hodi FS, Wolchok JD. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 2015, 373(1): 23-34. DOI:10.1056/NEJMoa1504030
[34] Chen M, Chang Y, Tang F, Xie QH, Li J, Yang H, He XX, Lin JS. Influence of cytotoxic T lymphocyte-associated antigen 4 polymorphisms on the outcomes of hepatitis B virus infection. Molecular Medicine Reports, 2014, 9(2): 645-652. DOI:10.3892/mmr.2013.1825
[35] Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu WF, Ramsdell F, Blazar BR, Lewis KE. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. European Journal of Immunology, 2011, 41(4): 902-915. DOI:10.1002/eji.201041136
[36] Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M. A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. European Journal of Immunology, 2009, 39(3): 695-703. DOI:10.1002/eji.200839116
[37] Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, Duran E, Solana R, Tarazona R. Expression of adhesion molecules and ligands for activating and costimulatory receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma cell lines. Cancer Immunology, Immunotherapy, 2009, 58(9): 1517-1526. DOI:10.1007/s00262-009-0682-y
[38] Zong L, Peng H, Sun C, Li FL, Zheng MJ, Chen YY, Wei HM, Sun R, Tian ZG. Breakdown of adaptive immunotolerance induces hepatocellular carcinoma in HBsAg-tg mice. Nature Communications, 2019, 10(1): 221. DOI:10.1038/s41467-018-08096-8
[39] Liu XL, Li MG, Wang XH, Dang ZB, Jiang YY, Wang XB, Kong YX, Yang ZY. PD-1+ TIGIT+ CD8+ T cells are associated with pathogenesis and progression of patients with hepatitis B virus-related hepatocellular carcinoma. Cancer Immunology, Immunotherapy, 2019, 68(12): 2041-2054. DOI:10.1007/s00262-019-02426-5
[40] Wolf Y, Anderson AC, Kuchroo VK. TIM3 comes of age as an inhibitory receptor. Nature Reviews Immunology, 2020, 20(3): 173-185. DOI:10.1038/s41577-019-0224-6
[41] Zhu C, Anderson AC, Kuchroo VK. TIM-3 and its regulatory role in immune responses//Ahmed R, Honjo T. Negative Co-receptors and ligands. Berlin, Heidelberg: Springer, 2011: 1-15.
[42] Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415(6871): 536-541. DOI:10.1038/415536a
[43] Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood, 2012, 110(16): 3734-3743.
[44] Gao X, Zhu YB, Li G, Huang HT, Zhang GB, Wang FM, Sun J, Yang QT, Zhang XG, Lu BF. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS One, 2012, 7(2): e30676. DOI:10.1371/journal.pone.0030676
[45] Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science, 2007, 318(5853): 1141-1143.
[46] Xu Y, Wang ZH, Du XH, Liu Y, Song XJ, Wang TX, Tan SY, Liang XH, Gao LF, Ma CH. Tim-3 blockade promotes iNKT cell function to inhibit HBV replication. Journal of Cellular and Molecular Medicine, 2018, 22(6): 3192-3201. DOI:10.1111/jcmm.13600
[47] Rong YH, Wan ZH, Song H, Li YL, Zhu B, Zang H, Zhao Y, Liu HL, Zhang AM, Xiao L, Xin SJ, You SL. Tim-3 expression on peripheral monocytes and CD3+CD16/CD56+ natural killer-like T cells in patients with chronic hepatitis B. Tissue Antigens, 2014, 83(2): 76-81. DOI:10.1111/tan.12278
[48] Wu W, Shi Y, Li J, Chen F, Chen Z, Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virology Journal, 2011, 8: 113. DOI:10.1186/1743-422X-8-113
[49] Liu FR, Zeng GC, Zhou ST, He XS, Sun NF, Zhu XF, Hu AB. Blocking Tim-3 or/and PD-1 reverses dysfunction of tumor-infiltrating lymphocytes in HBV-related hepatocellular carcinoma. Bulletin du Cancer, 2018, 105(5): 493-501. DOI:10.1016/j.bulcan.2018.01.018
[50] Wang J, Sanmamed MF, Datar I, Su TT, Ji L, Sun JW, Chen L, Chen YS, Zhu GF, Yin WW, Zheng LH, Zhou T, Badri T, Yao S, Zhu S, Boto A, Sznol M, Melero I, Vignali DAA, Schalper K, Chen LP. Fibrinogen-like protein 1 is a major immune inhibitory ligand of LAG-3. Cell, 2019, 176(1/2): 334-347.
[51] Ye B, Li XF, Dong YJ, Wang YY, Tian L, Lin S, Liu X, Kong HS, Chen Y. Increasing LAG-3 expression suppresses T-cell function in chronic hepatitis B: a balance between immunity strength and liver injury extent. Medicine (Baltimore), 2017, 96(1): e5275. DOI:10.1097/MD.0000000000005275
[52] Dong YJ, Li XF, Zhang L, Zhu QY, Chen CL, Bao JQ, Chen Y. CD4+ T cell exhaustion revealed by high PD-1 and LAG-3 expression and the loss of helper T cell function in chronic hepatitis B. BMC Immunology, 2019, 20(1): 27. DOI:10.1186/s12865-019-0309-9
[53] Ma CY, Lu ZC, Wang KX, Bie LH, Shen Q. Elevated expression of lymphocyte activation gene-3 on peripheral blood CD8+ T lymphocytes in patients with chronic hepatitis B virus infection. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(4): 532-537. (in Chinese)
马晨芸, 陆志成, 王克翔, 别立翰, 沈茜. 慢性乙型肝炎病毒感染患者外周血CD8+ T淋巴细胞表面淋巴细胞活化基因3水平升高. 细胞与分子免疫学杂志, 2016, 32(4): 532-537.
[54] Li FJ, Zhang Y, Jin GX, Yao L, Wu DQ. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8+ T cell in HCC patients. Immunology Letters, 2013, 150(1/2): 116-122.
[55] Crawford A, Wherry EJ. The diversity of costimulatory and inhibitory receptor pathways and the regulation of antiviral T cell responses. Current Opinion in Immunology, 2009, 21(2): 179-186. DOI:10.1016/j.coi.2009.01.010
[56] Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Massard C, Fuerea A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. European Journal of Cancer, 2016, 54: 139-148. DOI:10.1016/j.ejca.2015.11.016
[57] Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE, Kammula US, Topalian SL, Sherry RM, Kleiner D, Quezado M, Lowy I, Yellin M, Rosenberg SA, Yang JC. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2006, 24(15): 2283-2289. DOI:10.1200/JCO.2005.04.5716
[58] Weber JS, Dummer R, de Pril V, Lebbé C, Hodi FS, MDX010-20 Investigators. Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer, 2013, 119(9): 1675-1682. DOI:10.1002/cncr.27969
[59] Ryder M, Callahan M, Postow MA, Wolchok J, Fagin JA. Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocrine Related Cancer, 2014, 21(2): 371-381. DOI:10.1530/ERC-13-0499