微生物学报  2020, Vol. 60 Issue (2): 387-396   DOI: 10.13343/j.cnki.wsxb.20190176.
http://dx.doi.org/10.13343/j.cnki.wsxb.20190176
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

郭庆丰, 陈林, 尹震花, 张娟娟, 王彦波, 尹文兵. 2020
Qingfeng Guo, Lin Chen, Zhenhua Yin, Juanjuan Zhang, Yanbo Wang, Wenbing Yin. 2020
大黄鱼共生菌Bacillus coagulans LL1103的代谢产物研究
Secondary metabolites of Bacillus coagulans LL1103 from large yellow croaker (Pseudosciaena crocea)
微生物学报, 60(2): 387-396
Acta Microbiologica Sinica, 60(2): 387-396

文章历史

收稿日期:2019-04-17
修回日期:2019-05-10
网络出版日期:2019-05-31
大黄鱼共生菌Bacillus coagulans LL1103的代谢产物研究
郭庆丰1 , 陈林1 , 尹震花1 , 张娟娟1 , 王彦波2 , 尹文兵3     
1. 黄河科技学院, 河南省小分子新药研发国际联合实验室, 郑州市药用资源研究重点实验室, 河南 郑州 450063;
2. 浙江工商大学, 浙江 杭州 310018;
3. 中国科学院微生物研究所, 北京 100101
摘要[目的] 研究大黄鱼共生菌Bacillus coagulans LL1103的次生代谢产物及其抑菌活性。[方法] 利用色谱层析技术对B.coagulans LL1103发酵液乙酸乙酯和正丁醇提取物进行分离纯化;运用波谱技术鉴定化合物的结构;采用微量肉汤稀释法对化合物进行抗菌活性测定。[结果] 从大黄鱼内生菌B.coagulans LL1103发酵液中分离并鉴定9个环二肽类化合物,分别为:(1)环(4-羟基-脯氨酸-亮氨酸)、(2)环(异亮氨酸-丙氨酸)、(3)环(脯氨酸-缬氨酸)、(4)环(脯氨酸-苯丙氨酸)、(5)环(脯氨酸-亮氨酸)、(6)环(甘氨酸-丙氨酸)、(7)环(脯氨酸-甘氨酸)、(8)环(脯氨酸-丙氨酸)和(9)环(络氨酸-甘氨酸)。活性评价显示化合物379对大肠埃希菌(Escherichia coli)具有较强抑制作用,最低抑菌浓度(minimal inhibitory concentration,MIC)分别为8.0、4.0和16.0μg/mL。[结论] 从大黄鱼共生菌B.coagulans LL1103的发酵液中分离得到3个对大肠埃希菌(E.coli)具有较好抑制活性的化合物。
关键词大黄鱼    抑菌活性    环二肽    凝结芽孢杆菌    
Secondary metabolites of Bacillus coagulans LL1103 from large yellow croaker (Pseudosciaena crocea)
Qingfeng Guo1 , Lin Chen1 , Zhenhua Yin1 , Juanjuan Zhang1 , Yanbo Wang2 , Wenbing Yin3     
1. Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450063, Henan Province, China;
2. Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China;
3. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
Abstract: [Objective] To mine new antimicrobial agents from Bacillus coagulans LL1103 isolated from large yellow croaker. [Methods] The ethyl acetate and n-butanol extracts of B. coagulans LL1103 fermentation broth were separated and purified by chromatographic techniques, and their structures were identified based on spectral analysis. Their antibacterial activities were detected by micro-broth dilution method. [Results] From the fermentation broth of B. coagulans LL1103, 9 cyclic dipeptides (1-9) were obtained as (1) cyclo-(4-Hydroxyl-Pro-Leu), (2) cyclo-(Ile-Ala), (3) cyclo-(Pro-Val), (4) cyclo-(Pro-Phe), (5) cyclo-(Pro-Leu), (6) cyclo-(Gly-Ala), (7) cyclo-(Pro-Gly), (8) cyclo-(Pro-Ala) and (9) cyclo-(Tyr-Gly). Cyclic dipeptides 3, 7 and 9 showed strong antibacterial activities against Escherichia coli with minimal inhibitory concentration values of 8.0, 4.0 and 16.0 μg/mL, respectively. [Conclusion] Three compounds showed remarkably biological effect on the growth of E. coli.
Keywords: large yellow croaker    antibacterial activities    cyclic dipeptides    Bacillus coagulans    

随着抗生素的广泛和大量使用,食品和水产养殖业等都面临着病原微生物耐药性问题,最终导致人类健康面临威胁,急需探寻新型抗菌剂。微生物源天然防腐剂由于安全、广谱、高效、无毒副作用和抗菌性强等优势而成为研究热点[1]。最早的天然防腐剂乳酸链球菌素(nisin)来源于乳酸菌,对许多革兰氏阳性菌具有显著抑制作用,作为硝酸盐的代替品已广泛应用于肉制品的保鲜[2-3]。芽孢杆菌属(Bacillus)也是产生防腐抗菌物质的重要资源,如凝固素[4]lactosporin[5]polyfermenticin SCD[6]、Subtilin[7]等都具有广谱抗菌效果。然而来源于芽孢杆菌属的小分子抗菌化合物鲜有报道。天然的小分子抗菌剂由于分子量小、稳定性好、广谱抗菌、无药物屏蔽且不影响真核细胞等特性,已成为新型抗菌剂的重要研究方向。

凝结芽孢杆菌是一类“普遍安全的”杆菌类乳酸菌,具有芽孢菌的抗逆性强、耐高温高压、易贮藏等优点,其作为抑菌剂已广泛应用于食品、水产养殖业、医药、保健行业[8]。本研究的对象为凝结芽孢杆菌(B. coagulans LL1103),该菌从大黄鱼的肠道中分离得到,是一种常见养殖经济鱼类共生菌。研究发现该菌能够延长大黄鱼的保鲜期,其孢外产物能够抑制腐败菌的生长,并初步鉴定其抑菌活性物质为细菌素类物质[9-10]。目前,对于凝结芽孢杆菌的抑菌物质基础研究仅限于具有抑菌活性的有机酸和多肽类细菌素,尚未见其他小分子报道[8]。鉴于此,本研究拟以凝结芽孢杆菌为研究对象,对其代谢产物的化学成分进行系统研究,并以3株腐败菌为模型对化学成分进行抑菌活性评价,以期从中筛选出活性较好的小分子抗菌剂,为进一步开发防腐保鲜剂奠定物质基础。

1 材料和方法 1.1 仪器和试剂

Avanced Ⅲ型400 MHz核磁共振仪(TMS或氘代试剂残留峰做内标,瑞士Bruker公司),Aglient 1260 Infinity-6120型液质联用仪(美国Aglient公司),Calmflowplus型LUMTECH制备色谱系统(可变多波长UV/VIS检测器,德国Lumtech公司),EnVision HTS多功能酶标仪(美国PerkinElmer公司),安捷伦pursuit C-18 (150×21.2 mm,10 μm)色谱柱(美国Agilent公司),色谱乙腈(天津市科密欧化学试剂有限公司),柱层析、薄层色谱硅胶(80-100、200-300目,GF254,青岛海洋化工厂),羟丙基葡聚糖凝胶(Sephadex LH-20)(瑞士GE Healthcare公司),试剂为分析纯或色谱纯。

1.2 菌株来源

凝结芽孢杆菌(B. coagulans LL1103)来源于大黄鱼,由浙江工商大学王彦波教授提供,菌株保藏在中国典型培养物保藏中心,保藏号为CCTC M2013193。

活性检测指示菌分别为大肠埃希菌(Escherichia coli CGMCC 1.2836)、腐败希瓦氏菌(Shewanella putrefaciens CGMCC 1.3667)、铜绿假单胞菌(Pseudomonas aeruginosa CGMCC 1.860),上述菌株由浙江工商大学王彦波教授提供。

1.3 菌株的发酵培养

将凝结芽孢杆菌接种到营养琼脂培养基上,37 ℃条件下培养24 h,获得活化菌种;得到的活化菌种接种到MRS (蛋白胨10.0 g/L、牛肉膏10.0 g/L、酵母膏5.0 g/L、葡萄糖20.0 g/L、乙酸钠5.0 g/L、柠檬酸二胺2.0 g/L、磷酸氢二钾0.4 g/L、硫酸镁0.58 g/L、硫酸锰0.25 g/L、吐温-80 1.0 mL/L,pH 6.0)液体培养基中,在150 r/min、37 ℃条件下,摇床12 h,得种子液;按6%接种量把种子液接种到MRS液体培养基中,在150 r/min、37 ℃条件下,摇床培养72 h得发酵液20 L。

1.4 发酵产物的分离纯化

发酵液经减压浓缩至原发酵液体积的1/4后离心,取上清液用乙醇沉淀,过滤并继续将滤液浓缩至原滤液体积的1/4,然后用乙酸乙酯萃取,萃取液减压浓缩得乙酸乙酯提取物(25 g),将水相用正丁醇进行再次萃取,将正丁醇萃取液减压浓缩获得正丁醇提取物(20 g)。乙酸乙酯提取物经硅胶柱色谱减压粗分,石油醚-乙酸乙酯系统梯度洗脱(50:1,30:1,20:1,10:1,5:1,1:1),得到7个组分(Fr.1-Fr.7),Fr.5经Sephadex LH-20柱色谱,二氯甲烷-甲醇(1:1)洗脱,进一步得到3个组分(Fr.5.1-Fr.5.3),Fr.5-2经硅胶柱层析纯化得化合物3 (24.6 mg),Fr.5-3经硅胶柱层析纯化得到化合物4 (13.9 mg)。Fr.6经Sephadex LH-20柱色谱,二氯甲烷-甲醇(1:1)洗脱,进一步得到5个组分(Fr.6.1-Fr.6.5),Fr.6.3经重结晶得化合物2 (32.8 mg),Fr.6-4经反复硅胶柱层析得化合物5 (7.5 mg)。Fr.7经Sephadex LH-20柱色谱,二氯甲烷-甲醇(1:1)洗脱得化合物1 (9.4 mg)。正丁醇提取物经甲醇溶解后,经加压硅胶柱层析,以二氯甲烷-甲醇梯度洗脱(50:1,40:1,30:1,20:1,10:1,1:1),得到5个组分(Fr.1-Fr.5);Fr.3经Sephadex LH-20柱色谱,进一步得到3个组分(Fr.3.1-Fr.3.3),Fr.3.2经反复硅胶柱纯化得到化合物8 (9.3 mg),Fr.3.3经半制备高效液相色谱纯化得到化合物9 (10.8 mg);Fr.4经Sephadex LH-20柱色谱分离,再经重结晶得化合物7 (980.0 mg);Fr.5经Sephadex LH-20柱色谱分离,再经重结晶得化合物6 (940.0 mg)。

1.5 抑菌活性测定

指示菌培养:挑取单菌落于试管中,将试管置于37 ℃、200 r/min摇床中培养12 h,经LB肉汤梯度稀释至浓度约1×108 CFU/mL后备用。

化合物活性初筛采用纸片扩散法测抑菌圈,首先挑取单菌落于含有LB液体培养基的试管中,将试管置于37 ℃、200 r/min摇床中培养12 h;取LB半固体培养基55 ℃水浴加热30 min,每个培养皿倒入LB培养基15 mL;用移液枪加入指示菌,摇匀。用甲醇溶解待测抑菌样品(化合物浓度0.1 mg/mL),移液枪吸取10 μL滴加在直径为6 mm的无菌纸片上,待甲醇挥干后,贴于涂布有病原菌的固体培养基中。放置于35 ℃恒温培养箱中培养18-24 h,观察是否产生抑菌圈。

最小抑制浓度(MIC)测定:MIC的测定采用微量肉汤稀释法,样品用甲醇溶解,将倍比稀释后不同浓度的样品溶液分别加到灭菌的96孔聚苯乙烯板中,第1至第11孔加样品,每孔10 μL,样品浓度分别为1280、640、320、160、80、40、20、10、5、2.5、1.25 μg/mL。第12孔为空白对照。向每孔中加90 μL稀释后的指示菌液,密封后置37 ℃摇床孵育12-20 h判断结果。此时,第1孔至第11孔药物浓度分别为128、64、32、16、8、4、2、1、0.5、0.25、0.125 μg/mL。每个浓度设置3个平行实验,头孢西丁(cefoxitin)为阳性对照,培养基空白对照组,以小孔内完全抑制细菌生长的样品的最低浓度为MIC(用酶标仪测定OD600)。

2 结果和分析 2.1 化合物结构鉴定

化合物1:白色粉末,EI-MS m/z 226 [M]+,由1H NMR分析4.46 (1H, t, J=4.12 Hz), 4.17 (1H, m)两处信号为与酰胺基相连的质子信号,同时结合13C NMR中169.0、173.0两个酰胺羰基碳信号,推测化合物1为环二肽类化合物。对比氨基酸残基,1H NMR (400 MHz, CD3OD)中δ:4.52 (1H, m)连接羟基的次甲基质子信号和δ:4.46 (1H, t, J=4.12 Hz),3.66 (1H, dd, J=4.40, 12.76 Hz),3.43 (1H, d, J=12.80 Hz),2.28 (1H, dd, J=13.28, 6.44 Hz),2.05-2.13 (1H, m)信号以及13C NMR (100 MHz, CD3OD)中δ:173.0,55.2,69.1,39.4,58.7推测为4号位带羟基的脯氨酸残基。δ:1.85-1.95 (2H, m),1.49-1.57 (1H, m),0.96 (3H, d, J=6.20 Hz),0.97 (3H, d, J=6.20 Hz)推测含有异丙基,结合δ:169.0,54.6,38.2,25.8,23.3,22.2信号显示含有亮氨酸残基。1H NMR (400 MHz, CD3OD) δ:4.52 (1H, m, H-6),4.46 (1H, t, J=4.12 Hz, H-9),4.17(1H, m, H-4),3.66 (1H, m, H-3a),3.43 (1H, m, H-3b),2.28 (1H, m, H-5a),2.05~2.13 (1H, m, H-5b),1.85-1.95 (2H, m, H2-10),1.49-1.57 (1H, m, H-11),0.96 (3H, d, J=6.20 Hz, H-12),0.97 (3H, d, J=6.20 Hz, H-13);13C NMR (100 MHz, CD3OD) δ:173.0 (C-1, C=O),55.2 (C-3),69.1 (C-4), 39.4 (C-5),58.7 (C-6),169.0 (C-7, C=O),54.6 (C-9),38.2 (C-10),25.8 (C-11),23.3 (C-12),22.2 (C-13)。该化合物的1H NMR和13C NMR数据与文献[11]对照基本一致,故该化合物鉴定为环(4-羟基-脯氨酸-亮氨酸)(图 1)。

图 1 化合物1-9的结构式 Figure 1 Structures of compounds 1-9.

化合物2:白色粉末,EI-MS m/z 184 [M]+13C NMR (100 MHz, CD3OD)低场区含有两个酰胺羰基信号δ:171.3和169.2推测为结合与两个与N质子信号δ:4.03 (1H, m),3.90 (1H, m)推测为环二肽类化合物。1H NMR (400 MHz, CD3OD)给出δ:1.02 (3H, d, J=7.04 Hz),0.94 (3H, t, J=7.34 Hz)两个甲基氢信号,3.90 (1H, m),1.94-1.98 (1H, m)两个次甲基氢信号, 1.50-1.51 (1H, m),1.20-1.30 (1H, m)为一个CH2中氢信号,结合C信号δ:169.2,60.9,40.3,25.6,12.2,15.5推测为异亮氨酸残基。氢信号δ:4.03 (1H, m),1.44 (3H, d, J=6.8 Hz)以及碳信号δ:171.2,51.7,20.9推测为丙氨酸残基。1H NMR (400 MHz, CD3OD) δ:4.03 (1H, m, H-2),3.90 (1H, m, H-5),1.94-1.98 (1H, m, H-8),1.50-1.51 (1H, m, H-9a),1.44 (3H, d, J=6.8 Hz, H3-7),1.20-1.30 (1H, m, H-9b),1.02 (3H, d, J=7.04 Hz, H3-11),0.94 (3H, t, J=7.34 Hz, H3-10);13C NMR (100 MHz, CD3OD) δ:171.3 (C-1, C=O),51.7 (C-2),169.2 (C-4, C=O),60.9 (C-5),20.9 (C-7),40.3 (C-8),25.6 (C-9),12.2 (C-10),15.5 (C-11)。该化合物的1H NMR和13C NMR数据与文献[12]对照基本一致,故该化合物鉴定为环(丙氨酸-异亮氨酸)(图 1)。

化合物3:白色粉末,EI-MS m/z 196 [M]+,由1H NMR (400 MHz, CDCl3)分析可知δ:4.08 (1H, m), 3.94 (1H, m)是两个与N相连的CH质子信号,结合碳谱中的δ:164.9,169.9酰胺羰基碳信号,推测化合物为环二肽类化合物。1H NMR (400 MHz, CDCl3)给出两个双重峰甲基信号δ:1.07 (3H, d, J=7.20 Hz),0.92 (3H, d, J=6.80 Hz)以及3.94 (1H, m),2.64 (1H, m)两个次甲基氢信号,5.80 (1H, br s)为连N的氢质子,结合13C NMR (100 MHz, CDCl3) δ:164.9,60.4,28.6,16.1,19.3推测为缬氨酸残基。氢δ:3.64 (1H, m),3.55 (1H, m),2.04 (2H, m),2.38 (1H, m),1.91 (1H, m),4.08 (1H, m)和碳δ:169.9,58.8,28.4,22.4,45.1为脯氨酸的特征信号。1H NMR (400 MHz, CDCl3) δ: 5.80 (1H, br s, NH-8), 4.08 (1H, m, H-6),3.94 (1H, m, H-9),3.64 (1H, m, H-3b),3.55 (1H, m, H-3a),2.64 (1H, m, H-10),2.38 (1H, m, H-5a),2.04 (2H, m, H-4),1.91 (1H, m, H-5b),1.07 (3H, d, J=7.2 Hz, H-12),0.92 (3H, d, J=6.8 Hz, H-11);13C NMR (100 MHz, CDCl3) δ:164.9 (C-1, C=O),45.1 (C-3),22.4 (C-4),28.4 (C-5),58.8 (C-6),169.9 (C-7, C=O),60.4 (C-9),28.6 (C-10),16.1 (C-11),19.3 (C-12)。该化合物的1H NMR和13C NMR数据与文献[13]对照基本一致,故该化合物鉴定为环(缬氨酸-脯氨酸)(图 1)。

化合物4:白色粉末,EI-MS m/z 244 [M]+,在1H NMR (400 MHz, CDCl3)中,δ:5.76 (1H, br s)为连N的氢质子,4.28 (1H, dd, J=10.28, 2.78 Hz),4.07 (1H, m)是两个与N相连的CH质子信号,结合碳谱中的δ: 169.4,165.1酰胺羰基碳信号,推测化合物为环二肽类化合物。13C NMR中δ:7.22-7.37 (5H, m)为典型的单取代的苯环上质子信号,结合13C NMR (100 MHz, CDCl3)中169.4,56.2,36.8,136.0,129.2,129.1,127.1推测含有苯丙氨酸。碳δ: 165.1,59.1,28.3,22.5,45.4为脯氨酸特征信号。1H NMR (400 MHz, CDCl3) δ:7.22-7.37 (5H, m, H-2', 3', 4', 5', 6'),5.76 (1H, br s, NH-8),4.28 (1H, dd, J=10.28, 2.78 Hz, H-9),4.07 (1H, m, H-6),3.54-3.66 (3H, m, H-3, 10),2.80 (1H, m, H-10),2.30-2.34 (1H, m, H-5a),1.92-2.04 (3H, m, H-4, 5b);13C NMR (100 MHz, CDCl3) δ:165.1 (C-1, C=O),45.4 (C-3),22.5 (C-4),28.3 (C-5),59.1 (C-6),169.4 (C-7, C=O),56.2 (C-9),36.8 (C-10),136.0 (C-1'),129.2 (C-2', 6'),129.1(C-3', 5'),127.1 (C-4')。该化合物的1H NMR和13C NMR数据与文献[14]对照基本一致,故该化合物鉴定为环(脯氨酸-苯丙氨酸)(图 1)。

化合物5:白色粉末,EI-MS m/z 210 [M]+,在1H NMR (400 MHz, CDCl3)中,δ:5.80 (1H, br s)为连N的氢质子,δ:4.12 (1H, t, J=8.22 Hz),4.02 (1H, dd, J=3.12, 9.22 Hz)是两个与N相连的CH质子信号,结合碳谱中的δ:170.0,166.1酰胺羰基碳信号,推测化合物为环二肽类化合物。对比氨基酸残基,1H NMR(400 MHz, CDCl3)中δ:4.12 (1H, t, J=8.22 Hz),3.58 (2H, m),2.34 (1H, m),2.14 (1H, m),2.01 (1H, m),1.90 (1H, m)信号以及13C NMR (100 MHz, CDCl3)中δ:170.0,59.0,28.1,23.2,45.5推测为脯氨酸残基。δ:2.07 (1H, m),1.52 (1H, m),1.75 (1H, m),1.00 (3H, d, J=6.6 Hz),0.96 (3H, d, J=6.6 Hz)推测含有异丙基,结合δ:166.0,53.4,38.7,24.8,22.7,21.2信号显示含有亮氨酸残基。1H NMR (400 MHz, CDCl3) δ:5.80 (1H, br s, NH-8),4.12 (1H, t, J=8.22 Hz, H-6),4.02 (1H, dd, J=3.12, 9.22 Hz, H-9),3.58 (2H, m, H-3),2.34 (1H, m, H-5a),2.14 (1H, m, H-5b),2.07 (1H, m, H-10a),2.01 (1H, m, H-4a),1.90 (1H, m, H-4b),1.75 (1H, m, H-11),1.52 (1H, m, H-10b),1.00 (3H, d, J=6.60 Hz, H-13),0.96 (3H, d, J=6.60 Hz, H-12);13C NMR (100 MHz, CDCl3) δ:166.1 (C-1, C=O),45.5 (C-3),23.2 (C-4),28.1 (C-5),59.0 (C-6),170.0 (C-7, C=O),53.4 (C-9),38.7 (C-10),24.8 (C-11),22.7 (C-12),21.2 (C-13)。该化合物的1H NMR和13C NMR数据与文献[14]对照基本一致,故该化合物鉴定为环(脯氨酸-亮氨酸)(图 1)。

化合物6:白色粉末,EI-MS m/z 128 [M]+,在1H NMR (400 MHz, DMSO-d6)中δ:8.09 (1H, s), 7.91 (1H, s)提示存在活泼氨基质子,结合13C NMR (100 MHz, DMSO-d6) δ:169.3,166.7提示化合物为环二肽类化合物。氢δ:3.84 (1H, q, J=6.90 Hz),1.26 (3H, J=6.90 Hz)以及碳δ:169.3,50.2,19.1提示含有丙氨酸残基。氢δ:3.73 (2H, br s)和13C NMR (100 MHz, DMSO-d6)) δ: 166.7,45.0提示含有甘氨酸残基。1H NMR (400 MHz, DMSO-d6) δ:8.09 (1H, s, NH-6),7.91 (1H, s, NH-3),3.84 (1H, q, J=6.90 Hz, H-2),3.73 (2H, br s, H2-5),1.26 (3H, J=6.90 Hz, H3-7); 13C NMR (100 MHz, DMSO-d6)) δ:169.3 (C-1, C=O),50.2 (C-2),166.7 (C-4, C=O),45.0 (C-5),19.1 (C-7)。该化合物的1H NMR和13C NMR数据与文献[15]对照基本一致,故该化合物鉴定为环(甘氨酸-丙氨酸)(图 1)。

化合物7:白色针晶,EI-MS m/z 154[M]+,由1H NMR (400 MHz, DMSO-d6) δ:8.06 (1H, s)显示含有活泼氨基质子,结合13C NMR (100 MHz, DMSO-d6)) δ:169.7,164.3提示化合物为环二肽类化合物。氢δ:4.12 (1H, d, J=8.20 Hz, H-6),3.38 (2H, m),2.14 (1H, m),1.88(1H, m),1.81 (2H, m)以及碳δ:169.7,58.5,28.3,22.5为脯氨酸残基信号。氢δ:4.00 (1H, d, J=16.9 Hz),3.51 (1H, d, J=16.90 Hz)和13C NMR (100 MHz, DMSO-d6) δ:164.3,46.4提示含有甘氨酸残基。1H NMR (400 MHz, DMSO-d6) δ:8.06 (1H, s, NH-8),4.12 (1H, d, J=8.2 Hz, H-6),4.00 (1H, d, J=16.9 Hz, H-9a),3.51 (1H, d, J=16.9 Hz, H-9b),3.38 (2H, m, H2-3),2.14 (1H, m, H-5a),1.84 (2H, m, H2-4),1.84(1H, m, H-5b);13C NMR (100 MHz, DMSO-d6)) δ:169.7 (C-1, C=O),45.1 (C-3),22.5 (C-4),28.3 (C-5),58.5 (C-6),164.3 (C-7, C=O),46.4 (C-9)。该化合物的1H NMR和13C NMR数据与文献[13]对照基本一致,故该化合物鉴定为环(脯氨酸-甘氨酸)(图 1)。

化合物8:白色粉末,EI-MS m/z 168 [M]+,在1H NMR (400 MHz, CD3OD)中δ:4.25 (1H, m),4.18 (1H, m)是两个与N相连的CH质子信号,结合碳谱中的δ:171.2,167.7酰胺羰基碳信号,推测化合物为环二肽类化合物。氢δ:4.18 (1H, m),1.38 (3H, d, J=6.90 Hz)以及碳δ:171.2,50.7,14.3提示含有丙氨酸残基。氢δ:4.25 (1H, m),3.51 (2H, m),2.30 (1H, m),2.05(1H, m),1.95 (2H, m)和13C NMR (100 MHz, CD3OD) δ:166.7,59.1,45.0,27.8,22.2为脯氨酸残基。1H NMR (400 MHz, CD3OD) δ:4.25 (1H, m, H-6),4.18 (1H, m, H-9),3.51 (2H, m, H2-3),2.30 (1H, m, H-5a),1.98 (2H, m, H2-4),1.98 (1H, m, H-5b),1.38 (3H, d, J=6.9 Hz, H3-10);13C NMR (100 MHz, CD3OD) δ:171.2 (C-1, C=O),45.0 (C-3),22.2 (C-4),27.8 (C-5),59.1 (C-6),167.7 (C-7, C=O),50.7 (C-9),14.3 (C-10)。该化合物的1H NMR和13C NMR数据与文献[12]对照基本一致,故该化合物鉴定为环(丙氨酸-脯氨酸)(图 1)。

化合物9:白色粉末,EI-MS m/z 220 [M]+,在13C NMR (100 MHz, CD3OD)谱中δ:170.3,168.9为两个酰胺羰基信号,推测化合物为环二肽类化合物。在1H NMR (400 MHz, CD3OD)中,δ:7.01 (2H, d, J=8.40 Hz),6.71 (2H, d, J=8.40 Hz)为典型的对位取代苯环上质子信号,结合δ:4.15(1H, t, J=3.82 Hz),3.15 (1H, dd, J=13.80, 3.60 Hz),2.87 (1H, dd, J=13.80, 3.46 Hz)以及碳δ:170.3,57.8,40.2,126.7,116.4,132.6,158.2推测为络氨酸残基。在1H NMR (400 MHz, CD3OD)中,δ:3.41 (1H, d, J=17.7 Hz, H-3a),2.63(1H, d, J=17.7 Hz, H-3b)以及碳δ: 168.9,44.7推测为甘氨酸残基。1H NMR (400 MHz, CD3OD) δ:7.01 (2H, d, J=8.40 Hz, H2-2x, 6x),6.71 (2H, d, J=8.40 Hz, H2-3x, 5x),4.15(1H, t, J=3.82 Hz, H-2),3.41 (1H, m, H-7a),3.15 (1H, dd, J=13.80, 3.60 Hz, H-7b),2.87 (1H, dd, J=13.80, 3.46 Hz, H-3a),2.63(1H, m, H-3b);13C NMR (100 MHz, CD3OD) δ:170.3 (C-1, C=O),57.8 (C-2),168.9 (C-4, C=O),44.7 (C-5),40.2 (C-7),126.7(C-1x),116.4 (C-2x, 6x),132.6(C-3x, 5x),158.2 (C-4x)。该化合物的1H NMR和13C NMR数据与文献[16]对照基本一致,故该化合物鉴定为环(络氨酸-甘氨酸)(图 1)。

2.2 化合物抗菌活性

本实验通过抑菌圈实验对化合物1-9进行抗大肠埃希菌、腐败希瓦氏菌和铜绿假单胞菌活性初筛,发现化合物3、7和9对大肠埃希菌有一定抑制作用,而对腐败希瓦氏菌和铜绿假单胞菌均无明显抑制活性。进一步测定化合物的MIC值结果见表 1

表 1. 化合物抗菌活性MIC值(μg/mL) Table 1. Antibacterial activities of compounds (μg/mL)
Drugs and samples Escherichia coli (CGMCC 1.2836)
1 > 128
2 > 128
3 8
4 > 128
5 > 128
6 > 128
7 4
8 > 128
9 16
Cefoxitin 1

3 讨论

环二肽,因其稳定的六元环骨架结构以及两个氢键给体和氢键受体,使其成为药物化学中重要的药效基团。天然环二肽类化合物广泛存在于蛋白及多肽水解物,以及动植物、酵母、原生生物、真菌、海洋生物中,具有抗菌[17-19]、抗病毒[20]、抗肿瘤[21]、抗高血糖[22]、抗凝血[23]、抗疟疾[24]、神经保护[25]、杀螨虫[16]以及细胞信息传递[26]等多种生物活性和功能。本研究以来源于大黄鱼的益生菌凝结芽孢杆菌为研究对象,从其发酵液中分离得到9个环二肽类化合物,其中化合物3和4为首次从凝结芽孢杆菌分离得到。据报道,凝结芽孢杆菌孢外产物具有广谱的抑菌活性,并且对大肠埃希菌、铜绿假单胞菌、腐败希瓦氏菌等腐败菌具有显著的抑制作用[9-10]。鉴于此,本研究探讨了凝结芽孢杆菌中的9个环二肽类小分子化合物对大肠埃希菌、铜绿假单胞菌、腐败希瓦氏菌3株腐败菌的抑菌作用,发现只有化合物3、7、9对大肠埃希菌具有良好抑制活性。其他环二肽类化合物对3株腐败菌并没有显示生物活性。推测其抑菌活性可能是两种或多种环二肽的协同作用,例如,Rhee等[27]发现环(L-脯氨酸-L-亮氨酸)和环(L-脯氨酸-L-苯丙氨酸)两种环二肽协同能够显著抑制耐万古霉素的多种粪肠球菌的生长,其最低抑菌浓度为0.25-1 mg/L。Sajeli等[28]报道了化合物(4-羟基-L-脯氨酸-L-亮氨酸)和环(4-羟基- L-脯氨酸-L-苯丙氨酸)两种环二肽混合物能够显著抑制多种高粱霉菌的生长。本次分离得到的环二肽化合物多数具有脯氨酸骨架,而含脯氨酸骨架的化合物往往具有良好的抗菌活性,例如,Fdhila等[14]曾报道含脯氨酸的化合物3、4、5具有抗鳗弧菌活性,其MIC值0.03-0.07 μg/mL。Furtado等[13]报道了含脯氨酸的化合物1、3、4、5、7等化合物对金黄色酿脓葡萄球菌和滕黄微球菌有较弱的抑制作用。Kumar等[29]报道了化合物5的两种构型环(L-脯氨酸-L-亮氨酸)和环(D-脯氨酸- L-亮氨酸)具有广谱抗真菌活性,不过对大肠杆菌和铜绿假单胞菌,只有特殊构型环(D-脯氨酸-L-亮氨酸)具有明显抑制活性。据报道化合物4环(脯氨酸-苯丙氨酸)具有抗青枯雷尔氏菌、结核分支杆菌以及稻瘟病、烟曲霉娄地青霉、白色念珠菌等真菌活性[16, 19, 30-31]。本文首次报道了环二肽类化合物3、7、9的抗大肠埃希菌活性,为进一步开发利用凝结芽孢杆菌资源,开发新型防腐和抗菌剂奠定了物质基础。

致谢

感谢浙江工商大学王彦波教授课题组提供菌株。

References
[1] Singh A, Sharma PK, Garg G. Natural products as preservatives. International Journal of Pharma and Bio Sciences, 2010, 1(4): 601-612.
[2] Ross RP, Morgan S, Hill C. Preservation and fermentation:past, present and future. International Journal of Food Microbiology, 2002, 79(1/2): 3-16.
[3] Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a food preservative:part 1:physicochemical properties, antimicrobial activity, and main uses. Critical Reviews in Food Science and Nutrition, 2016, 56(8): 1262-1274. DOI:10.1080/10408398.2013.763765
[4] Hyronimus B, Le Marrec C, Urdaci MC. Coagulin, a bacteriocin-like inhibitory substance produced by Bacillus coagulans I4. Journal of Applied Microbiology, 1998, 85(1): 42-50. DOI:10.1046/j.1365-2672.1998.00466.x
[5] Riazi S, Wirawan RE, Badmaev V, Chikindas ML. Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. Journal of Applied Microbiology, 2009, 106(4): 1370-1377. DOI:10.1111/j.1365-2672.2008.04105.x
[6] Lee KH, Jun KD, Kim WS, Paik HD. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology, 2001, 32(3): 146-151. DOI:10.1046/j.1472-765x.2001.00876.x
[7] Chan WC, Bycroft BW, Leyland ML, Lian LY, Roberts GCK. A novel post-translational modification of the peptide antibiotic subtilin:isolation and characterization of a natural variant from Bacillus subtilis A.T.C.C. 6633. Biochemical Journal, 1993, 291: 23-27. DOI:10.1042/bj2910023
[8] Dong HJ, Jiang JY, Zheng LJ, Pang JX. Research advances of novel microecologic probiotics Bacillus coagulans. Food Science, 2010, 31(1): 292-294. (in Chinese)
董惠钧, 姜俊云, 郑立军, 庞俊星. 新型微生态益生菌凝结芽孢杆菌研究进展. 食品科学, 2010, 31(1): 292-294.
[9] Zhao Y, Fu LL, Wang YB. Physiochemical properties of antibacterial substance produced by Bacillus coagulans LL1103. Food Research and Development, 2015, 36(1): 20-25. (in Chinese)
赵钰, 傅玲琳, 王彦波. 凝结芽孢杆菌抑菌物质的理化特性研究. 食品研究与开发, 2015, 36(1): 20-25.
[10] Fu LL, Wang C, Ruan XM, LI G, Zhao Y, Wang YB. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208. International Journal of Food Microbiology, 2018, 266: 60-68. DOI:10.1016/j.ijfoodmicro.2017.11.012
[11] De Rosa S, Mitova M, Tommonaro G. Marine bacteria associated with sponge as source of cyclic peptides. Biomolecular Engineering, 2003, 20(4/6): 311-316.
[12] Wang SM, Tan NH, Yang YB, He M. Cyclodipeptides from the roots of Panax notoginseng. Natural Product Research and Development, 2004, 16(5): 383-386.
[13] Furtado NAJC, Pupo MT, Carvalho I, Campo VL, Duarte MCT, Bastos JK. Diketopiperazines produced by an Aspergillus fumigatus Brazilian strain. Journal of the Brazilian Chemical Society, 2005, 16(6B): 1448-1453. DOI:10.1590/S0103-50532005000800026
[14] Fdhila F, Vázquez V, Sánchez JL, Riguera R. dd-Diketopiperazines:antibiotics active against Vibrio anguillarum isolated from marine bacteria associated with cultures of Pecten maximus. Journal of Natural Products, 2003, 66(10): 1299-1301. DOI:10.1021/np030233e
[15] Yu Y, Wang JH, Fang ST, Jiang ZZ, Zhou XQ, Xia CH. Identification of biofouling biofilms bacterium Pseudoalteromonas issachenkonii YT1305-1 and analysis on chemical constitutents of its metabolites. Microbiology China, 2014, 41(7): 1278-1286. (in Chinese)
于洋, 王建华, 方圣涛, 姜作真, 周晓群, 夏传海. 污损生物膜细菌Pseudoalteromonas issachenkonii YT1305-1的鉴定及其代谢物化学成分分析. 微生物学通报, 2014, 41(7): 1278-1286.
[16] Li XY, Wang YH, Yang J, Cui WY, He PJ, Munir S, He PF, Wu YX, He YQ. Acaricidal activity of cyclodipeptides from Bacillus amyloliquefaciens W1 against Tetranychus urticae. Journal of Agricultural and Food Chemistry, 2018, 66(39): 10163-10168. DOI:10.1021/acs.jafc.8b03806
[17] De Carvalho MP, Abraham WR. Antimicrobial and biofilm inhibiting diketopiperazines. Current Medicinal Chemistry, 2012, 19(21): 3564-3577. DOI:10.2174/092986712801323243
[18] Chen HL, Wan CX, Zhang LL. A new diketopiperazine isolated from a Nocardiopsis strain TRM20105 guided by bioassay against Candida albicans. Natural Product Research, 2018. DOI:10.1080/14786419.2018.1475389
[19] Song SH, Fu SN, Sun XY, Li P, Wu JE, Dong TY, He F, Deng YY. Identification of cyclic dipeptides from Escherichia coli as new antimicrobial agents against Ralstonia Solanacearum. Molecules, 2018, 23(1): 214.
[20] Bolognesi ML, Ai Tran HN, Staderini M, Monaco A, López-Cobeñas A, Bongarzone S, Biarnés X, López-Alvarado P, Cabezas N, Caramelli M, Carloni P, Menéndez JC, Legname G. Discovery of a class of diketopiperazines as antiprion compounds. ChemMedChem, 2010, 5(8): 1324-1334. DOI:10.1002/cmdc.201000133
[21] Tian ZH, Chu YY, Wang H, Zhong LL, Deng MY, Li WB. Biological activity and interaction mechanism of the diketopiperazine derivatives as tubulin polymerization inhibitors. RSC Advances, 2018, 8(2): 1055-1064. DOI:10.1039/C7RA12173C
[22] Song MK, Hwang IK, Rosenthal MJ, Harris DM, Yamaguchi DT, Yip I, Go VLW. Anti-hyperglycemic activity of zinc plus cyclo (His-Pro) in genetically diabetic Goto-Kakizaki and aged rats. Experimental Biology and Medicine, 2003, 228(11): 1338-1345. DOI:10.1177/153537020322801112
[23] Lucietto FR, Milne PJ, Kilian G, Frost CL, Van De Venter M. The biological activity of the histidine-containing diketopiperazines cyclo(His-Ala) and cyclo(His-Gly). Peptides, 2006, 27(11): 2706-2714. DOI:10.1016/j.peptides.2006.04.023
[24] Pérez-Picaso L, Olivo HF, Argotte-Ramos R, Rodríguez-Gutiérrez M, Rios MY. Linear and cyclic dipeptides with antimalarial activity. Bioorganic & Medicinal Chemistry Letters, 2012, 22(23): 7048-7051.
[25] Cornacchia C, Cacciatore I, Baldassarre L, Mollica A, Feliciani F, Pinnen F. 2, 5-diketopiperazines as neuroprotective agents. Mini-Reviews in Medicinal Chemistry, 2012, 12(1): 2-12. DOI:10.2174/138955712798868959
[26] Li JR, Wang WL, Xu SX, Magarvey NA, McCormick JK. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(8): 3360-3365. DOI:10.1073/pnas.1017431108
[27] Rhee KH. Cyclic dipeptides exhibit synergistic, broad spectrum antimicrobial effects and have anti-mutagenic properties. International Journal of Antimicrobial Agents, 2004, 24(5): 423-427.
[28] Sajeli Begum A, Basha SA, Raghavendra G, Kumar MVN, Singh Y, Patil JV, Tanemura Y, Fujimoto Y. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi. Chemistry & Biodiversity, 2014, 11(1): 92-100.
[29] Nishanth Kumar S, Mohandas C, Siji JV, Rajasekharan KN, Nambisan B. Identification of antimicrobial compound, diketopiperazines, from a Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode against major plant pathogenic fungi. Journal of Applied Microbiology, 2012, 113(4): 914-924. DOI:10.1111/j.1365-2672.2012.05385.x
[30] Kwak MK, Liu R, Kim MK, Moon D, Kim AH, Song SH, Kang SO. Cyclic dipeptides from lactic acid bacteria inhibit the proliferation of pathogenic fungi. Journal of Microbiology, 2014, 52(1): 64-70. DOI:10.1007/s12275-014-3520-7
[31] Kumar SN, Mohandas C. Antimycobacterial activity of cyclic dipeptides isolated from Bacillus sp. N strain associated with entomopathogenic nematode. Pharmaceutical Biology, 2014, 52(1): 91-96. DOI:10.3109/13880209.2013.815635