微生物学报  2019, Vol. 59 Issue (5): 891-906   DOI: 10.13343/j.cnki.wsxb.20180341.
http://dx.doi.org/10.13343/j.cnki.wsxb.20180341
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

齐兴柱, 刘磊, 汪军. 2019
Xingzhu Qi, Lei Liu, Jun Wang. 2019
RNA-Seq揭示Foc4在外源氧化胁迫(H2O2)下的基因表达及细胞代谢变化
RNA-Seq reveals changes of gene expression and cellular metabolism caused by exogenous oxidative stress (H2O2) in Foc4
微生物学报, 59(5): 891-906
Acta Microbiologica Sinica, 59(5): 891-906

文章历史

收稿日期:2018-08-02
修回日期:2018-09-17
网络出版日期:2018-11-28
RNA-Seq揭示Foc4在外源氧化胁迫(H2O2)下的基因表达及细胞代谢变化
齐兴柱1,2 , 刘磊3 , 汪军3     
1. 海南大学热带生物资源教育部重点实验室, 海南 海口 570228;
2. 海南大学海洋学院, 海南 海口 570228;
3. 中国热带农业科学院环境与植物保护研究所, 海南 海口 571101
摘要:尖孢镰刀菌古巴专化型4号小种(Fusarium oxysporum f.sp. cubense race 4,Foc4)是香蕉枯萎病的强致病性病原菌。Foc4在侵染香蕉植株早期必须面对寄主的活性氧迸发。[目的] 了解Foc4应对外源氧化胁迫的分子机制。[方法] 利用Illumina 2500 RNA-Seq测序平台分析了经外源氧化胁迫(H2O2)处理的Foc4与对照在转录组水平的基因表达差异。[结果] 在外源氧化胁迫条件下,Foc4的生长受到抑制。转录组测序获得了超过2千万条clean reads。进一步的差异基因表达分析以差异倍数FC(fold change)≥ 2且FDA值≤ 0.001为选择标准,发现496个基因表达上调,298个基因表达下调。GO功能富集分析显示,429个基因比对到GO功能分析数据库,在这些差异表达基因中,许多与代谢过程、生物调节、细胞过程和刺激应答有关。KEGG通路富集分析显示,有141个表达差异显著基因比对到KEGG中的50条代谢途径。其中,主要是各类氨基酸代谢途径、脂肪酸代谢途径。同时也包括与抗氧化胁迫直接相关的代谢途径,包括DNA的损伤修复、类胡萝卜素的生物合成、过氧化物酶体、谷胱甘肽代谢等。[结论] 这些结果暗示,为了在强氧化胁迫环境下生存,Foc4细胞从包括直接应对氧化胁迫的信号调控途径在内的物质代谢和能量代谢均发生改变以应对环境变化的胁迫。
关键词尖孢镰刀菌古巴转化型4号小种    氧化胁迫    差异表达基因    细胞代谢    
RNA-Seq reveals changes of gene expression and cellular metabolism caused by exogenous oxidative stress (H2O2) in Foc4
Xingzhu Qi1,2 , Lei Liu3 , Jun Wang3     
1. Key Laboratory of Tropic Biological Resources of Ministry of Education, Hainan University, Haikou 570228, Hainan Province, China;
2. College of Ocean, Hainan University, Haikou 570228, Hainan Province, China;
3. Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan Province, China
Abstract: Fusarium oxysporum f. sp. cubense race 4 (Foc4), the strong virulent pathogen of Banana Fusarium Wilt, must face to oxidative burst produced by the host in the early stage of infecting banana plants. [Objective] To study the molecular mechanism how Foc4 responses exogenous oxidative stress, [Methods] RNA-Seq was done between the wild type B2 strain of Foc4 treated by H2O2 and the control using Illumina 2500 sequencing platform, and differentially expression genes (DEGs) was analyzed. [Results] The growth of Foc4 was inhibited under exogenous oxidative stress, and more than 20 million clean reads were obtained after RNA-Seq. Compared with the control, a total of 496 genes were up-regulated and 298 genes were down-regulated, respectively, with FDA value ≤ 0.001 and Fold Change (FC) ≥ 2 used as the selection criteria. Gene ontology (GO) functional enrichment analysis showed that 429 genes were annotated in the GO functional analysis database. Many of them were related to metabolic processes, biological regulation, cellular processes and response to stimuli. Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis showed that 141 DEGs were annotated in 50 metabolic pathways in KEGG. These metabolic pathways mainly include the metabolic pathway of various amino acids and fatty acid. It also includes metabolic pathways that are directly related to antioxidant stress, including damage repair of DNA, biosynthesis of carotenoids, peroxisome and glutathione metabolism. [Conclusion] Material metabolism, energy metabolism and signal regulation pathways directly dealing with oxidative stress must be changed in Foc4 cells to cope with environmental stress and to survive in strong oxidative stress environment.
Keywords: Fusarium oxysporum f. sp. cubense race 4    oxidative stress    differential expression genes    cellular metabolism    

活性氧迸发现象是病原真菌侵染植物寄主过程中大多数寄主的一种早期防御应答反应,它在阻止病原菌渗透进植物组织的互作过程中扮演了重要的角色[1-2]。活性氧是植物释放的一些由细胞原生质膜上的NADPH氧化酶产生的物质(ROS),包括超氧阴离子、羟自由基和H2O2等。其中,最主要的是H2O2[3]

植物中,ROS在病原菌入侵位点的积累被认为具有3个重要的作用:首先,高水平的ROS能够直接杀死入侵位点的病原体从而阻止病原菌的攻击[4];其次,ROS也参与了强化细胞壁,包括细胞壁的木质化、细胞壁糖蛋白的交联,从而延缓病原菌侵入[5];第三,入侵位点的ROS也能作为第二信使诱导各种植物防御应答相关基因的表达和触发植物的免疫反应[6-7]。然而,过量ROS的积累也会氧化寄主细胞自身成分,损害细胞器从而影响寄主植物自身的细胞功能。因此,一旦形成,ROS必须被尽可能有效清除以降低对自身的损害。在植物中,ROS清除系统包括酶和非酶清除系统。非酶ROS-清除系统主要指抗氧化剂,如抗坏血酸、维生素E、卟啉化合物、类胡萝卜素、酚类化合物、甘露醇和还原性谷胱甘肽等。这些抗氧化剂能直接消除ROS[8-10]。酶ROS-清除系统包括超氧化物歧化酶(SOD)、多酚氧化酶(PPO)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸/谷胱甘肽循环酶、谷胱甘肽过氧化物酶(GPX)和硫氧还蛋白等[11-12]。与此类似,植物病原菌也进化出了多种策略清除ROS并成功入侵寄主植物[13]。例如,据文献报道,在棉阿舒囊霉(Ashbya gossypii)中,核黄素的过量产生就与氧化胁迫之间存在联系[14]。除了核黄素的过量产生,真菌还有其他抗氧化剂分子保护自身,如过氧化氢酶、超氧化物歧化酶和谷胱甘肽过氧化物酶等[14-15]。在应对寄主植物的防御反应过程中,野油菜黄单胞菌(Xanthomonas campestris pv. Campestris) Xcc8004基因组编码了9个谷胱甘肽S-转移酶(GST)、2个谷胱甘肽过氧化物酶和4个过氧化氢酶用于清除ROS [16]

随着高通量测序平台的发展,例如Illumina RNA-Seq,基因组范围内的表达全貌已经在多种丝状真菌,如绿僵菌(Metarhizium anisopliae)、里氏木霉(Trichoderma reesei)、稻瘟病菌(Magnaporthe oryzae)和曲霉(Aspergillus)等中得到了广泛的研究[17-20]。因此,RNA-Seq已经成为了监测研究对象在各种环境条件下转录组水平应答全貌的一个广受欢迎的工具。在前期研究中,笔者发现Foc4在侵染巴西蕉(Musa AAA Giant Cavendish cv Brazil)组培苗时,在苗根部的Foc4入侵位点发现了强烈的活性氧迸发现象[1]。考虑到H2O2是细胞中主要的ROS成分,因此,利用H2O2模拟外源氧化胁迫处理Foc4的野生型B2菌株并分析了Foc4在转录组水平对外源氧化胁迫的防御应答反应。

1 材料和方法 1.1 真菌菌株、生长条件及处理方法

Foc4的一株强致病性野生型菌株B2从海南省乐东县一株枯萎病患病的香蕉植株根部采集,由本实验室分离鉴定并以分生孢子悬液形式-80 ℃保存于30%甘油中。

真菌菌株的培养采用葡萄糖-马铃薯培养基(固体PDA、液体PDB)。为检测Foc4在强氧化胁迫条件下的PDA培养基上的生长情况,分别用打孔器取已经在PDA培养基上生长5 d的菌饼(d = 0.9 cm)置于含0、10和20 μmol/mL H2O2的PDA培养基上,同时,将1片灭菌的盖玻片斜插在培养基中,生长2 d后,连续5 d每天测量菌落直径,观察菌落形态,显微镜下观察长到盖玻片上的菌丝及孢子形态。另将在PDB液体培养基中以120 r/min、28 ℃振荡培养6 d的B2菌株在超净工作台中用6层擦镜纸过滤收集孢子液。然后按孢子液与培养基为1:50的比例分别接种到含0和10 μmol/mL H2O2的PDB培养基中,28 ℃、120 r/min振荡培养,显微镜下观察孢子萌发及后期产孢情况。同时,将前述的孢子液以相同的比例将孢子液接种到新的PDB培养基中,28 ℃、120 r/min振荡培养12 h,然后加入H2O2至终浓度10 μmol/mL,继续在相同条件下振荡培养,5 h后离心收集菌体,在滤纸上短暂晾干后迅速液氮冷冻。然后将样品用干冰包裹送北京百迈客生物科技有限公司进行下一步RNA提取,Illumina文库构建和RNA-Seq测序。没有用H2O2处理的野生型B2菌株作为对照。所有样品都取3个生物学重复。

1.2 测序数据的生物信息学分析

为对测序数据进行质量控制,首先对Raw Data进行数据过滤,去除Raw Data中所包含的测序接头、测序引物及低质量Clean Data,从而获得高质量Clean Data。同时,计算Clean Data的Q20、Q30、GC含量及序列重复水平。所有的下游分析均依据高质量的Clean Data进行。转录组的组装用Trinity[21]软件完成。Trinity软件首先将测序Reads打断为较短的片段(K-mer),然后将这些小片段延伸成较长的片段(Contig),并利用这些片段之间的重叠,得到片段集合(Component),最后利用De Bruijn图的方法和测序Read信息,在各个片段集合中分别识别转录本序列。

基因的功能注释依据以下数据库进行:Nr (NCBI非冗余蛋白序列);Nt (NCBI非冗余核酸序列);Pfam (蛋白家族);KOG/COG (蛋白质直系同源簇数据库);Swiss-Prot (一个含有详细注释内容的蛋白质序列数据库);KO (KEGG全基因组及代谢途径数据库);GO (基因功能注释数据库)。用RSEM[22]软件评估基因表达水平。

1.3 基因差异表达分析、GO富集和KEGG通路富集分析

对照样品和H2O2处理样品的基因差异表达分析采用DESeq软件进行。结果的P值均使用Benjamini和Hochberg的方法控制错误发现率并进行调整。调整后的P值< 0.05即被DESeq筛选出并标记为差异表达基因。

差异表达基因GO功能(gene ontology)富集分析采用GOseq R软件包进行[23]。KEGG[24]是了解和利用生物系统如细胞、生物体和生态系统的高级功能的数据库资源,从分子水平信息,特别是由基因组测序和其他高通量实验技术产生的大规模分子数据集(http://www.genome.jp/kegg/)中挖掘信息。KEGG通路中差异表达基因的统计富集分析采用KOBAS[25]软件进行。分析差异表达基因在某一通路上是否过出现(over-presentation)即为差异表达基因的Pathway富集分析。利用富集因子(enrichment factor)分析Pathway的富集程度,并利用Fisher精确检验方法计算富集显著性。其中富集因子的计算公式如下:富集因子 = (pathway中的差异表达基因数/所有差异表达基因数)/(pathway中的所有基因数/KEGG中所有的基因数)。

1.4 荧光定量PCR分析

为了验证RNA-Seq数据是否准确,挑选部分差异表达基因,对其表达量进行了相对荧光定量PCR分析。荧光定量PCR反应的所有引物列于表S1中,反应按照操作手册说明的方法在荧光定量PCR仪MiniOpticonTM (BIO-RAD, Laboratories,Inc. USA)系统中进行。反应总体积20.0 μL,包括总RNA 2.0 μL,RNase-free H2O 4.4 μL,正向和反向引物(10 mmol/L)各1.3 μL,2×one-step SYBR mix 10.0 μL,以及RT-PCR Mix (One-step SYBR Real-time RT-PCR kit,Beijing BioTeke) 1.0 μL。PCR反应条件为94 ℃ 15 s, 50 ℃ to 54 ℃ 15 s, 72 ℃ 1 min,共40个循环并每个循环读取信号45 s。持家基因β-actin (JQ965663)作为内参对照基因,其引物为Actin-s和Actin-a,序列见表S1。所有实验均进行3次独立的生物学重复。标准的相对转录水平用2Ct法估算。

2 结果和分析 2.1 外源氧化胁迫条件下的Foc4的生长及菌落形态

为了解在外源氧化胁迫条件下Foc4在固体培养基上的生长情况,分别将0.8 cm的野生B2菌株的菌饼接种到含0、10、20 μmol/mL H2O2的PDA培养基上生长2 d后拍照如图 1-A,发现,不含H2O2的PDA培养基上,菌丝向空气中生长较多,显微镜下观察菌丝杂乱无章排列,而含10 μmol/mL和20 μmol/mL H2O2的PDA培养基上,菌丝紧贴培养基生长,有趣的是,显微镜下观察菌丝呈整齐的同方向排列。生长曲线测定(图 1-B)表明培养基上的H2O2浓度越高,菌落生长越缓慢。

图 1 B2菌株在外源氧化胁迫条件下的菌丝和菌落形态及生长曲线 Figure 1 Hyphae, colonies morphology and growth curves of B2 strain under exogenous oxidative stress. A: The observation of hyphae and colonies morphology of B2 strain grown on PDA medium with 0, 10, 20 μmol/mL H2O2 (scale bar = 20 μm); B: Growth curves of B2 strain on PDA medium with 0, 10, 20 μmol/mL H2O2

2.2 RNA-Seq数据概况

为了获得Foc4在外源氧化胁迫条件下的基因表达变化概况,利用RNA-Seq技术分析了H2O2 (10 μmol/mL)处理5 h的Foc4野生型B2菌株与未处理的对照样品的基因表达差异。共分离了6个RNA样品,分别是对照样品的3个生物学重复和H2O2 (10 μmol/mL)处理5 h样品的3个生物学重复。将对照样品的3个生物学重复的RNA样品经质量检测合格后等比例混合进行Illumin测序,其测序编号(sequence ID)命名为T05。3个H2O2处理样品的生物学重复的测序编号分别命名为T06、T07和T08。测序后获得原始数据23.4 Gb,将原始数据递交到NCBI网站的SRA数据库,获得研究登录号为SRP155580。经过测序质量控制(去除接头序列、未知及低质量序列)之后,共得到20.22 Gb Clean Data,其中对照菌株的Clean Reads为20185815条,H2O2处理样品的3个生物学重复的平均Clean Reads为20034203条(表 1),各样品Q30碱基百分比均不小于85.86%。将各样品的Clean Data与组装得到的Transcript或Unigene库进行序列比对,比对结果统计见表 1。其中,对照样品比对到Transcript或Unigene的Mapped Reads为18859126,Mapped Ratio为93.43%。H2O2处理样品的3个生物学重复的平均Mapped Reads为18701841,Mapped Ratio为93.35%。

表 1. Foc4应对外源氧化胁迫(H2O2)的测序数据评估统计表 Table 1. Sequencing data assessment statistics table in response to exogenous oxidative stress (H2O2) in Foc4
Sequencing samples Clean reads Base number GC content/% %≥Q30 Mapped reads Mapped ratio/%
Control sample 20185815 5082289060 52.77 86.06 18859126 93.43
Treatment sample (H2O2) 20034203 5044305842 52.74 85.86 18701841 93.35

2.3 差异表达基因的GO功能富集分析

在本研究中,我们使用FDR≤0.001和log2ratio的绝对值≥1作为判断基因是否有差异表达的临界值。根据这个标准,在H2O2 (10 μmol/mL)处理样品和对照样品之间总共确定了794个差异表达基因。其中,496个基因在H2O2 (10 μmol/mL)处理5 h后表达严重上调,同时,298个基因表达下调。H2O2处理样品和对照样品之间基因差异表达的总体面貌如图 2。此外,GO功能分类揭示了这些DEGs在外源氧化胁迫(H2O2)下的潜在功能。结果显示315个DEGs被分类到44个功能(functional groups)组,属于3个主要的GO功能区域:生物学过程(biological processes) 15,细胞组分(cellular components) 15,分子功能(molecular functions) 14。代谢过程(Metabolic process)、细胞部分(cell part)和催化活性(catalytic activity)分别是3个GO功能分类中最多的功能分类群。在这些分类群中,与代谢过程(metabolic processes)、单一生物过程(single-organism process)、生物调控(biological regulation)、刺激应答(response to stimulus)、催化活性(catalytic activity)、结合(binding)、转运活性(transporter activity)、抗氧化活性(antioxidant activity)相关的差异表达基因都占有较高的百分比。GO功能注释结果暗示在Foc4中,多个生物学过程及多种分子功能参与了外源氧化胁迫应答过程。

图 2 差异表达基因的MA图 Figure 2 MA plot of differentially expressed genes. Each point in MA plot represents a gene. The abscissa are A value: log2 (FPKM), that is the numeric value of the mean value of the difference of gene expression between control and treatment samples; the ordinate is the M value: log2 (FC), that is the numeric value of the fold changes of the difference of gene expression between control and treatment samples, which is used to measure the difference of the gene expression. The green represent that the gene is down-regulated, the red represents that the gene is up-regulated, and the black dots represent genes that have no significant differences

2.4 差异表达基因的KEGG通路富集分析及与氧化胁迫耐受相关的代谢通路

为了进一步评估差异表达基因在应对外源氧化胁迫过程中的功能,使用KEGG数据库进行了信号通路分析。结果表明当外界氧化胁迫信号传递到细胞内之后,细胞整个转录组层面的基因表达被扰乱,细胞因此进行了代谢过程的全局调节。总计141个DEGs被鉴定到50个不同的代谢通路,包括多个应对外源氧化胁迫相关的代谢通路,如β-丙氨酸代谢通路(β-alanine metabolism),类胡萝卜素生物合成途径(carotenoid biosynthesis),过氧化物酶体(peroxisome),谷胱甘肽代谢(glutathione metabolism),脂肪酸降解(fatty acid degradation),内质网蛋白质加工(protein processing in endoplasmic reticulum)。但是大部分的代谢涉及各种氨基酸代谢和能量代谢。其中涉及参与合成蛋白质的大部分氨基酸在内的各种氨基酸代谢的通路如下,包括缬氨酸、亮氨酸和异亮氨酸降解(Valine,leucine and isoleucine degradation),酪氨酸代谢(Tyrosine metabolism),苯丙氨酸代谢(Phenylalanine metabolism),色氨酸代谢(Tryptophan metabolism),赖氨酸和成与降解(Lysine biosynthesis,Lysine degradation),甘氨酸、丝氨酸和苏氨酸代谢(Glycine, serine and threonine metabolism),丙氨酸、天门冬氨酸和谷氨酸代谢(Alanine,aspartate and glutamate metabolism),缬氨酸、亮氨酸和异亮氨酸生物合成(Valine, leucine and isoleucine biosynthesis),半胱氨酸和蛋氨酸代谢(Cysteine and methionine metabolism)等(表 2)。涉及能量代谢和其他由氧化胁迫引起的代表性通路调节包括丙酮酸代谢(pyruvate metabolism)、α-亚麻酸代谢(α-linolenic acid metabolism)、乙醛酸和二羧酸盐代谢(glyoxylate and dicarboxylate metabolism)、糖酵解/糖异生(glycolysis/ gluconeogenesis)、2-羰基羧酸代谢(2-oxocarboxylic acid metabolism)、甘油磷脂代谢(glycerophospholipid metabolism)、甘油酯代谢(glycerolipid metabolism),泛酸和辅酶A生物合成(pantothenate and CoA biosynthesis)、脂肪酸代谢(fatty acid metabolism)等(表 3)。

表 2. 氨基酸代谢通路的KEGG富集分析 Table 2. KEGG enrichment analysis of metabolism pathways of amino acids
Pathway DEGs number P-value Corrected P-value Gene sequence ID
Up regulated Down regulated
Valine, leucine and isoleucine degradation 12 3.61055e-08 1.80527e-06 c10302; c10303; c10889; c10899; c1124; c12071; c3079; c3533; c3879; c4098; c7729; c9607
Tyrosine metabolism 14 2.68431e-07 1.34215e-05 c10654; c11321; c11480; c1230; c12311; c12390; c12838; c1978; c3246; c5059; c5096; c5958 c4711; c2010
β-Alanine metabolism 9 1.40783e-05 0.00071 c10302; c10303; c11480; c12390; c5059; c5096; c7729; c9607 c1002
Phenylalanine metabolism 9 0.00010 0.00504 c10126; c10654; c11480; c12390; c12838; c3246; c5059; c5096; c8251
Tryptophan metabolism 7 0.00617 0.03873 c10654; c12838; c1575; c3843; c8251; c8420; c9607
Lysine biosynthesis 2 0.16057 1 c10654; c12838
Lysine degradation 2 0.31229 1 c1230; c9607
Glycine, serine and threonine metabolism 4 0.19545 0.02359 c11073; c11480; c12390; c5096
Histidine metabolism 2 0.17689 0.04988 c5059; c9607
Valine, leucine and isoleucine biosynthesis 3 0.10934 0.03364 c1124; c3533; c7306
Cysteine and methionine metabolism 3 0.34408 1 c10654; c12838; c3936
Arginine and proline metabolism 4 0.37869 1 c13369; c9607 c6764; c1002
Protein processing in endoplasmic reticulum 5 0.24762 1 c3364; c5105; c7199; c7205; c9295
Phenylalanine, tyrosine and tryptophan biosynthesis 2 0.36268 1 c10654; c12838 –-
Biosynthesis of amino acids 6 0.62914 1 c10654; c11073; c1124; c12838; c3533 c7306
Alanine, aspartate and glutamate metabolism 5 0.05330 1 c1230; c7729 c6764; c2295; c6074
P-value is retained to 5 bits after the decimal point. “–” means nothing.

表 3. 能量代谢相关通路的KEGG富集分析 Table 3. KEGG enrichment analysisof energy metabolism related pathways
Pathway DEGs number P-value Corrected P-value Gene sequence ID
Up regulated Down regulated
alpha-Linolenic acid metabolism 3 0.00273 0.13633 c12382; c2272; c4982
Arachidonic acid metabolism 2 0.01843 0.92081 c2272; c4982
Glyoxylate and dicarboxylate metabolism 5 0.01860 0.93014 c11073; c1575; c3843; c8420 c10094
Pyruvate metabolism 2 0.64682 1 c2842; c9607
Glycolysis/Gluconeogenesis 3 0.50285 1 c5059; c9607 c4711
Inositol phosphate metabolism 2 0.27825 1 c10302; c10303
2-Oxocarboxylic acid metabolism 5 0.08196 1 c10654; c1124; c12838; c3533 c7306
Starch and sucrose metabolism 2 0.88139 1 c10914; c87410
Nicotinate and nicotinamide metabolism 2 0.17689 1 c11240; c4299
Biosynthesis of unsaturated fatty acids 3 0.03817 1 c12382 c11429; c3949
Carbon metabolism 5 0.68379 1 c10302; c10303; c11073 c10094; c4711
Propanoate metabolism 3 0.09071 1 c10302; c10303; c7729
Fatty acid biosynthesis 2 0.12892 1 c11999 c11429
Fatty acid metabolism 4 0.07591 1 c11999; c12382 c11429; c3949
Amino sugar and nucleotide sugar metabolism 3 0.47949 1 c12142; c1905; c7284
Pantothenate and CoA biosynthesis 3 0.09984 1 c1124; c3533 c7306
Ether lipid metabolism 2 0.19345 1 c2272; c4982
Glycerophospholipid metabolism 3 0.33146 1 c2272; c4982 c7136
Fatty acid degradation 4 0.07591 1 c11999; c12382; c9607 c4711
Butanoate metabolism 2 0.27825 1 c1230; c7729
Glycerolipid metabolism 3 0.11916 1 c4982; c9607 c5851
P-value is retained to 5 bits after the decimal point. “–” means nothing.

2.5 qRT-PCR验证基因表达

为了验证RNA-Seq实验结果,选择了其中12个基因进行qRT-PCR分析。包括9个表达上调的基因,分别为3个谷胱甘肽S转移酶编码基因,其RNA-Seq测序编号/编码蛋白的GenBank登录号分别为c5762/EXL96709.1、c6215/EMT69530.1和c9910/EMT62696.1;2个过氧化氢酶编码基因c1575/AFH74421.1和c8420/AFH74418.1;3个转录因子编码基因c12019/EMT67964.1、c744/ EMT69978.1、c1898/EXM02846.1;1个热休克蛋白c6716/EMT74020.1。也随机选取了3个在氧化胁迫条件下表达没有明显变化的基因,即一个AMP结合酶编码基因c1001/EMT63995.1、1个蛋白酶转录激活因子partT编码基因c13946/ EXM07552.1和1个α-D-木糖苷甲氧基水解酶编码基因c5104/EXM08950.1。qRT-PCR验证结果如图 3所示,这些基因的差异表达情况与RNA-Seq实验结果类似。

图 3 部分差异表达基因的qRT-PCR验证分析 Figure 3 QRT-PCR verification analysis of partial differentially expressed genes. The abscissa is sequence ID, and the ordinate is the numeric value of the fold changes of relative transcript levels

3 讨论

在生物体内,强氧化胁迫比如过量的ROS的积累能氧化细胞成分如DNA、蛋白质和脂质,因而损害细胞器并影响细胞功能[26]。ROS对蛋白质的氧化攻击可导致特异位点氨基酸发生改变,肽链断裂,交联反应产物聚集,也可改变电荷并使蛋白水解的易感性增强;氧化胁迫对脂质的影响主要表现在参与过氧化反应生成羟自由基和脂质过氧化自由基;而对DNA的损伤则表现在引起DNA缺失、突变和其他致命的遗传效应[27]。在植物与病原菌相互作用过程中,病原菌普遍进化出多种清除过量ROS的解毒机制。目前,关于Foc4在基因表达水平上对外源氧化胁迫应答的机制仍然不清楚。因此,本研究用H2O2模拟Foc4入侵香蕉苗根部时遭遇的强氧化胁迫环境,对Foc4野生型B2菌株应对外源氧化胁迫的分子机制从转录组水平上进行了全面分析。在统计到的所有Unigene中,约7%的基因参与了应对氧化胁迫的关键生物学过程,包括能量代谢、多种氨基酸代谢、与抗氧化胁迫相关的次生代谢、碳/氮代谢等,这暗示在转录组水平上,Foc4细胞为应对外源强氧化胁迫,整个转录都被扰乱。

RNA-Seq高通量测序结果显示,为了在强氧化胁迫环境下生存,细胞需要作如下准备。

首先,为启动因外源强氧化胁迫造成损害的修复工作作准备。与DNA损伤修复相关的多个基因表达大幅上调,包括聚腺苷二磷酸核糖基聚合酶(poly [ADP-ribose] polymerase,PARP)、尿嘧啶核糖核酸糖化酶(uracil-DNA glycosylase,UNG)、甲酰胺嘧啶-DNA糖基化酶(formamidopyrimidine- DNA glycosylase,FPG)、ATP依赖性DNA解旋酶Ⅱ亚基1 (ATP-dependent DNA helicase Ⅱ subunit 1)、AP内切酶2 (AP endonuclease 2,APE2)和Nudix水解酶蛋白(Nudix hydrolase protein)(表 4)。其中,PARP的主要作用是通过信号转导酶机制检测因代谢、化学或辐射诱导的单链DNA断裂(SSB)并启动即时细胞应答从而参与SSB修复[28];UNG负责从DNA中去除可能因强氧化环境造成胞嘧啶脱氨基形成的尿嘧啶[29];FPG是一种碱基切除修复酶,能识别和清除大量受损DNA中的氧化嘌呤[30];APE2也是一种参与DNA碱基切除修复通路的修复酶[31]。这些基因表达量的上调表明细胞的强氧化胁迫条件下,DNA受到损伤,细胞因此启动了DNA损伤修复机制。

表 4. Foc4中应对外源氧化胁迫(H2O2)相关的表达上调基因统计表 Table 4. Up-regulated genes in response to exogenous oxidative stress (H2O2) in Foc4
Gene type in response to oxidative stress Description Sequence ID/GenBank ID log2FC/(T_6_7_8/T5)
Zinc finger transcription factor (Zn2Cys6) type Zinc finger
––
––
––
––
––
––
(Zn2Cys6) type Zinc finger/activator of stress protein
C2H2 type Zinc finger/homebox protein
C2H2 type Zinc finger
C3HC4 type Zinc finger
GATA zinc finger
ZPR1 zinc-finger
AN1-like Zinc finger
poly [ADP-ribose] polymerase
c4874/EXM04956.1
c5794/EXM10726.1
c13226/EXL98129.1
c13095/EXM08512.1
c5015/EMT62765.1
c744/EMT69978.1
c12128/EMT70882.1
c4169/
c12019/EMT67964.1
c4323/EMT67266.1
c2600/EMT74449.1
c11031/EMT66090.1
c11258/EMT69587.1
c8624/–
c9323/–
+3.712855
+2.081330
+1.620499
+1.917104
+1.640161
+1.520620
+1.312950
+1.289634
+2.383335
+3.147961
+1.913637
+1.038733
+1.683298
+1.088912
+2.668276
The enzymes related to recombination and repair uracil-DNA glycosylase
formamidopyrimidine-DNA glycosylase
ATP-dependent DNA helicase Ⅱ subunit 1
AP endonuclease 2
Nudix hydrolase protein/DNA binding
30 kDa heat shock protein
c8140/EXM07262.1
c10809/EMT61532.1
c1973/EXM09424.1
c11203/EXL94289.1
c11436/EXL95516.1
c11786/EMT69825.1
+1.310567
+1.025043
+1.141737
+1.555148
+1.268459
+1.135821
Heat shock protein Hsp90 protein/molecular chaperone HtpG
Molecular chaperone DnaK (Hsp70)
Heat shock protein hsp98
Heat shock protein sti1 like protein
DJ-1/PfpI family /chaperone protein HSP31
Glutathione -S transferase
c6716/EMT74020.1
c7205/–
c7199/–
c6922/EMT70246.1
c3779/MG742356
c4943/–
+4.983781
+1.664211
+1.157735
+1.136453
+1.047286
+1.123718
The enzymes related to glutathione metabolism ––
––
Glutathione -S transferase 1
Glutathione S-transferase P 10
Catalase-peroxidase
Catalase C
c5762/EXL96709.1
c12291/EXM68889.1
c8523/–
c9910/EMT62696.1
c6215/EMT69530.1
+2.935593
+2.389664
+1.827036
+2.295640
+3.737162
Peroxidase and catalase Catalase P2/peroxisomal
Catalase-1/Catalase A
Thioredoxin reductase
c8251/EXL97916.1
c3843/AFH74419.1
c1575/AFH74421.1
c8420/AFH74418.1
+1.716078
+1.329390
+1.049066
+2.223337
Thioredoxin and thioredoxin reductase Thioredoxin-1/TRX family c4051/EMT72863.1
c1726/EXL97718.1
+1.958119
+1.100786
“- -” means the same description as above; “-” means that the sequence is not submitted to GenBank.

其次,细胞代谢发生大幅改变,为清除过量的ROS并在强氧化胁迫环境下生存作准备。细胞生长需要能量,特别是在环境胁迫条件下。细胞对环境胁迫作出应答,需要合成更多次生物质,因此需要消耗更多能量,同时,用于修复合成的能量需求也增加,因此,细胞需要选择最有效的途径来产生更多能量,并在环境胁迫条件下维持能量储备[32]。经对照样品与H2O2处理样品比较,基因表达模式在多个能量代谢通路中也显示了有意义的差异,例如,糖酵解通路中,丙酮酸脱羧酶(pyruvate decarboxylase,c10832)编码基因表达严重上调,L-乳酸脱氢酶[L-lactate dehydrogenase (cytochrome),lldD,c2842]和(NAD+)依赖型乙醛脱氢酶(aldehyde dehydrogenase,ALDH,c9607)表达均明显上调。除ALDH表达明显上调之外,(NADP+)依赖型乙醛脱氢酶(c5059)表达也明显上调。同时,丙酮酸脱氢酶复合体的2个重要组份丙酮酸脱氢酶E1α亚基(pyruvate dehydrogenase E1 α subunit,c4098)和二氢硫辛酸转乙酰基酶组分E2 (dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex,c3079)的编码基因表达也大幅上调。这个实验结果表明糖酵解产物丙酮酸参与TCA循环的过程明显加强。

另外,在脂肪酸降解代谢中,被鉴定的基因包括长链脂酰CoA合成酶编码基因ACSL (c11999)和酰基辅酶A氧化酶编码基因ACO (c12382)。这2个基因在氧化胁迫条件下表达都有大幅上调。但是编码过氧化物酶体2, 4-二烯酰辅酶A还原酶(peroximal 2, 4-dienoyl-CoA reductase)的pDCR基因表达则明显下调。脂肪酸在氧化分解前,必须先转变为活泼的脂酰CoA。ACSL能在ATP、CoASH、Mg2+参与下,将过氧化物酶体中的长脂肪酸链活化形成脂酰CoA并指导脂肪酸进入β-氧化[33];ACO广泛存在于多种生物体中,参与各类脂肪酸β-氧化的第一步反应,是脂肪酸β-氧化的限速酶。在氧化胁迫条件下,这2个基因的高水平表达表明对长链脂肪酸β-氧化产生积极的调节作用,并为细胞生长提供足够的能量和中间代谢产物。由于在不饱和脂肪酸的β-氧化途径中,过氧化物酶体2, 4-二烯酰辅酶A还原酶是整个催化反应的限速酶,暗示在氧化胁迫条件下,不饱和脂肪酸的β-氧化受到限制。

此外,如结果中所述,在外源强氧化胁迫条件下,大多数氨基酸的代谢与合成加强。可能是以下原因导致:(1)细胞内氨基酸是否充足与抗氧化胁迫之间本来就存在因果关系,例如,Harding等报告了一个由eIF2α亚基磷酸化启动并由ATF4介导的综合胁迫应答反应,确保为蛋白质和谷胱甘肽生物合成供应充足的氨基酸,并保护细胞免受氧化胁迫损害[34]。Lupo等的研究发现,缺乏Tyr1基因(编码酪氨酸生物合成中涉及的酶之一)的酿酒酵母突变株对氧化胁迫敏感,由此认为酪氨酸参与保护酿酒酵母免受氧化胁迫损伤[35]。(2)为细胞内部重新合成或修复被损伤的蛋白质提供原料,为其他代谢提供充足的中间代谢产物;例如,半胱氨酸就是谷胱甘肽的前体,而不是非特异性还原剂[34],谷氨酸和甘氨酸也是组成谷胱甘肽的重要原料。(3)强氧化胁迫引起代谢紊乱。例如,有报道发现患有严重哮喘的儿童有独特的代谢紊乱情况,并发现有两种与氧化胁迫有关的代谢途径,其中一种即为甘氨酸、丝氨酸、苏氨酸代谢途径[36]

RNA-Seq高通量测序结果揭示在外源氧化胁迫(10 μmol/mL H2O2)条件下,Foc4 B2菌株将近800基因发生了差异表达。其中39个为转录因子编码基因,包括24个表达上调、15个表达下调的转录因子编码基因。有趣的是,其中大部分为Zn(2)-Cys(6)型锌指蛋白转录因子,其中9个上调,10个下调。Zn(2)-Cys(6)型锌指蛋白转录因子在真菌细胞内部具有多种重要的复杂功能。Lu等在水稻稻瘟病菌(Magnaporthe oryzae)中鉴定了104个Zn(2)-Cys(6)型锌指蛋白转录因子,发现它们大多与水稻稻瘟病菌生长发育、产孢、抗环境胁迫及致病性有关[37]。其他上调的锌指蛋白转录因子还包括C2H2型、C3H4型、ZPR1、GATA和类似AN1锌指蛋白(表 4)。推测这些表达上调的转录因子可能参与了氧化胁迫应答过程中多种代谢通路重要基因的表达调节。

过氧化物酶体,也称为微体,是在几乎所有真核细胞中发现的细胞器,参与脂肪酸和D-氨基酸的分解代谢、抗氧化系统中H2O2的代谢和谷胱甘肽的代谢等。由于过氧化物酶体中含有过氧化氢酶和超氧化物歧化酶(SOD),在保护细胞免受ROS损伤方面起着重要的作用。在本研究中,在H2O2胁迫下,Foc4细胞的过氧化物酶体中有7个基因差异表达基因被鉴定,其中,有3个被鉴定为过氧化氢酶基因(表 4),它们通过直接参与H2O2的降解以降低细胞内H2O2的水平。其余4个DEGs中有3个参与长链脂肪酸β-氧化的基因表达上调。此外,还有1个未被富集到过氧化物酶体的过氧化氢-过氧化物酶(c8251/EXL97916.1),推测可能也参与了H2O2的降解。

除了上面讨论的机制,在代谢模式中也有许多其他的变化。例如,过量表达的谷胱甘肽S转移酶已被证明有助于抵抗包括氧化胁迫在内的多种环境胁迫[38],在本研究中,我们发现5个谷胱甘肽S转移酶编码基因大幅上调(表 4)。此外,涉及类胡萝卜素生物合成关键酶基因的表达也出现了严重上调,包括编码番茄红素β-环化酶(lycopene β-cyclase,LCYB,c10640)的AL2、编码八氢番茄红素脱氢酶(phytoene desaturase)的AL1和编码菊烯双加氧酶(torulene dioxygenase)的CarT。其中,番茄红素β-环化酶是类胡萝卜素合成途径中的关键酶,在番茄红素β-环化酶的催化下,番茄红素可转化合成β-胡萝卜素;八氢番茄红素脱氢酶是类胡萝卜素生物合成途径中的首要限速酶,它参与催化无色的八氢番茄红素转变成有色类胡萝卜素。类胡萝卜素作为类异戊二烯聚合物,定位在植物组织光合和非光合的质体中,除了作为捕获光的辅助色素,另一个更重要的作用是清除各种形式的活性氧。例如,雨生红球藻(Haematococcus pluvialis)细胞在氧化胁迫条件下,类胡萝卜素的生物合成得到加强[39]。巴西固氮螺菌(Azospirillum brasilense)的氧耐受突变体细胞能产生更多的类胡萝卜素应对培养液中高的溶解氧浓度[40]。此外,有证据表明氧化胁迫与脂质膜的氧化降解偶联,这一过程中可产生200种以上的醛类[41],其中许多具有高度反应活性。本研究发现在外源氧化胁迫条件下,Foc4菌株中,有5个醛脱氢酶编码基因(ALDH)发生了有意义的上调,除了前面提到的(NAD+)依赖性乙醛脱氢酶(c9607)和(NADP+)依赖性乙醛脱氢酶(c5059)之外,还包括琥珀酸半醛脱氢酶/NAD依赖性醛脱氢酶编码基因(mitochondrial succinate-semialdehyde dehydrogenase) c1230/EMT66011.1;甲基丙二酸半醛脱氢酶基因(methylmalonate-semialdehyde dehydrogenase,ALDH_SF) c10302/EMT72566.1;NAD依赖性半醛脱氢酶基因(Semialdehyde dehydrogenase) c4396/EMT73882.1。由ALDH编码的醛脱氢酶亚家族包含NAD(P)+-依赖酶可以清除内源性和外源性醛以减轻原核和真核生物中的氧化/亲电胁迫[41]。IkurohOhsawa等的报道表明线粒体乙醛脱氢酶2 (ALDH-2)的功能之一就是抗氧化胁迫[42]。醛脱氢酶的另一个具体功能是参与β-丙氨酸[泛酸(维生素B5)的一个重要中间体]的生物合成以及CoA的生物合成[43]。这些表达上调的醛脱氢酶编码基因(ALDH)可能通过上述途径促进细胞与氧化损伤对抗。

此外,硫氧还蛋白(thioredoxin)和硫氧还蛋白还原酶(thioredoxin reductase)也是细胞内重要的抗氧化剂,硫氧还蛋白-1(Trx-1)作为维持细胞内蛋白质还原状态的主要的二硫键还原酶,在对抗细胞的氧化胁迫、维持细胞正常生理活性中起着重要的作用。而硫氧还蛋白还原酶1(Tr1)是细胞中的一种主要抗氧化酶,其作用是调节硫氧还蛋白的氧化还原状态。差异基因表达分析发现,在外源氧化胁迫条件下,硫氧还蛋白还原酶(c4051/EMT72863.1) H和硫氧还蛋白(c1726/EXL97718.1) (表 4)编码基因表达均有大幅上调,暗示硫氧还蛋白和硫氧还蛋白还原酶均参与了Foc4抗外源氧化胁迫。此外,热休克蛋白(heat shock protein,HSPs)作为一组参与细胞应对环境胁迫的可溶性胞内蛋白质家族,在各种环境胁迫条件(如热胁迫、氧化损伤、化学性刺激)下,表达量大幅增加[44],且可发生易位,发挥从蛋白质质量调节到决定细胞存活或死亡等作用。如,真核细胞中分子伴侣HSP33存在于内质网的网状结构中,能维持氧化胁迫和蛋白质加工之间的平衡,帮助细胞清除氧化性蛋白质的累积[45]。HSPs在胁迫状态合成增加,可保护抗氧化酶(如超氧化物歧化酶等)活性,增强细胞的抗自由基能力。HSP70、HSP90在蛋白质转运、激素受体结合、酶活性稳定及修复方面发挥作用。而我们的测序数据表明在外源氧化胁迫条件下6个编码热休克蛋白的基因表现出差异表达。包括hsp98(c6922/EMT70246.1)、hsp90(c7205)、hsp70(c7199)、hsp31(c4943)和hsp sti1(c3779/MG742356)。这些发现与其他物种中编码热休克蛋白基因在环境胁迫下高表达的研究结果是一致的(表 4)。终上所述,为了在强氧化胁迫环境下生存,Foc4细胞从包括直接应对氧化胁迫的信号调控途径在内的物质代谢和能量代谢均发生改变以应对环境变化的胁迫。

References
[1] Qi XZ, Guo LJ, Yang LY, Huang JS. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiological and Molecular Plant Pathology, 2013, 84: 76-85. DOI:10.1016/j.pmpp.2013.07.007
[2] Chung KR. Stress response and pathogenicity of the necrotrophic fungal pathogen Alternaria alternata. Scientifica, 2012, 2012: 635431.
[3] Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 251-275. DOI:10.1146/annurev.arplant.48.1.251
[4] de Gara L, de Pinto MC, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry, 2003, 41(10): 863-870. DOI:10.1016/S0981-9428(03)00135-9
[5] Hückelhoven R, Kogel KH. Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?. Planta, 2003, 216(6): 891-902.
[6] Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. The Plant Cell, 2001, 13(1): 179-191. DOI:10.1105/tpc.13.1.179
[7] Wagner AM. A role for active oxygen species as second messengers in the induction of alternative oxidase gene expression in Petunia hybrida cells. FEBS Letters, 1995, 368(2): 339-342. DOI:10.1016/0014-5793(95)00688-6
[8] Nafie E, Hathout T, Mokadem AS Al. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Brazilian Journal of Plant Physiology, 2011, 23(2): 161-174. DOI:10.1590/S1677-04202011000200008
[9] Peroni LA, Ferreira RR, Figueira A, Machado MA, Stach-Machado DR. Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus. Genetics and Molecular Biology, 2007, 30(3): 872-880.
[10] Ahammed GJ, Yuan HL, Ogweno JO, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ. Brassinosteroid alleviates phenanthrene and pyrene phytotoxicity by increasing detoxification activity and photosynthesis in tomato. Chemosphere, 2012, 86(5): 546-555. DOI:10.1016/j.chemosphere.2011.10.038
[11] Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(4): 1629-1633. DOI:10.1073/pnas.90.4.1629
[12] Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland Q, Jones JDG, Doke N. Nicotiana benthamiana gp91phox Homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell, 2003, 15(3): 706-718. DOI:10.1105/tpc.008680
[13] Guo M, Chen Y, Du Y, Dong Y H, Guo W, Zhai S, Zhang HF, Dong SM, Zhang ZG, Wang YC, Wang P, Zheng XB. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7(2): e1001302. DOI:10.1371/journal.ppat.1001302
[14] Kavitha S, Chandra TS. Oxidative stress protection and glutathione metabolism in response to hydrogen peroxide and menadione in riboflavinogenic fungus Ashbya gossypii. Applied Biochemistry and Biotechnology, 2014, 174(6): 2307-2325. DOI:10.1007/s12010-014-1188-4
[15] Walther A, Wendland J. Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genetics and Biology, 2012, 49(9): 697-707. DOI:10.1016/j.fgb.2012.06.006
[16] Qian W, Jia YT, Ren SX, He YQ, Feng JX, Lu LF, Sun QH, Ying G, Tang DJ, Tang H, Wu W, Hao P, Wang LF, Jiang BL, Zeng SY, Gu WY, Lu G, Rong L, Tian YC, Yao ZJ, Fu G, Chen BS, Fang RX, Qiang BQ, Chen Z, Zhao GP, Tang JL, He CU. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 2005, 15(6): 757-767. DOI:10.1101/gr.3378705
[17] Wang ZX, Zhou XZ, Meng HM, Liu YJ, Zhou Q, Huang B. Comparative transcriptomic analysis of the heat stress response in the filamentous fungus Metarhizium anisopliae using RNA-Seq. Applied Microbiology and Biotechnology, 2014, 98(12): 5589-5597. DOI:10.1007/s00253-014-5763-y
[18] Rokas A, Gibbons JG, Zhou XF, Beauvais A, Latgé JP. The diverse applications of RNA-seq for functional genomic studies in Aspergillus fumigatus. Annals of the New York Academy of Sciences, 2012, 1273(1): 25-34. DOI:10.1111/nyas.2012.1273.issue-1
[19] Ries L, Pullan ST, Delmas S, Malla S, Blythe MJ, Archer DB. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger. BMC Genomics, 2013, 14: 541. DOI:10.1186/1471-2164-14-541
[20] Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathogens, 2012, 8(2): e1002514. DOI:10.1371/journal.ppat.1002514
[21] Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng QD, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. DOI:10.1038/nbt.1883
[22] Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 2011, 12: 323. DOI:10.1186/1471-2105-12-323
[23] Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11(2): R14. DOI:10.1186/gb-2010-11-2-r14
[24] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(S1): D480-D484.
[25] Mao XZ, Cai T, Olyarchuk JG, Wei LP. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 2005, 21(19): 3787-3793. DOI:10.1093/bioinformatics/bti430
[26] Skamnioti P, Henderson C, Zhang ZG, Robinson Z, Gurr SJ. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2007, 20(5): 568-580. DOI:10.1094/MPMI-20-5-0568
[27] McKersie BD. Oxidative stress. http://www.plantstress.com/articles/oxidative%20stress.htm. 2018-09-14.
[28] Isabelle M, Moreel X, Gagné JP, Rouleau M, Ethier C, Gagné P, Hendzel MJ, Poirier GG. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Science, 2010, 8: 22. DOI:10.1186/1477-5956-8-22
[29] Olsen LC, Aasland R, Wittwer CU, Krokan HE, Helland DE. Molecular cloning of human uracil-DNA glycosylase, a highly conserved DNA repair enzyme. The EMBO Journal, 1989, 8(10): 3121-3125. DOI:10.1002/embj.1989.8.issue-10
[30] Serre L, de Jésus KP, Boiteux S, Zelwer C, Castaing B. Crystal structure of the Lactococcus lactis formamidopyrimidine-DNA glycosylase bound to an abasic site analogue-containing DNA. The EMBO Journal, 2002, 21(12): 2854-2865. DOI:10.1093/emboj/cdf304
[31] Burkovics P, Szukacsov V, Unk I, Haracska L. Human Ape2 protein has a 3'-5' exonuclease activity that acts preferentially on mismatched base pairs. Nucleic Acids Research, 2006, 34(9): 2508-2515. DOI:10.1093/nar/gkl259
[32] Ullah A, Chandrasekaran G, Brul S, Smits GJ. Yeast adaptation to weak acids prevents futile energy expenditure. Frontiers in Microbiology, 2013, 4: 142.
[33] Coleman RA, Lewin TM, Muoio DM. Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annual Review of Nutrition, 2000, 20: 77-103. DOI:10.1146/annurev.nutr.20.1.77
[34] Harding HP, Zhang YH, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell, 2003, 11(3): 619-633. DOI:10.1016/S1097-2765(03)00105-9
[35] Lupo S, Aranda C, Olivera H, Riego L, González A, Miranda-Ham L, Servin L. Tyrosine is involved in protection from oxidative stress in Saccharomyces cerevisiae. Canadian Journal of Microbiology, 1997, 43(10): 963-970. DOI:10.1139/m97-138
[36] Fitzpatrick AM, Park Y, Brown LAS, Jones DP. Children with severe asthma have unique oxidative stress-associated metabolomic profiles. Journal of Allergy and Clinical Immunology, 2014, 133(1): 258-261. DOI:10.1016/j.jaci.2013.10.012
[37] Lu JP, Cao HJ, Zhang LL, Huang PY, Lin FC. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by High-throughput gene knockout in the rice blast fungus. PLoS Pathogens, 2014, 10(10): e1004432. DOI:10.1371/journal.ppat.1004432
[38] Cummins I, Cole DJ, Edwards R. A role for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. The Plant Journal, 1999, 18(3): 285-292. DOI:10.1046/j.1365-313X.1999.00452.x
[39] Kobayashi M, Kakizono T, Naga S. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Applied Environmental Microbiology, 1993, 59(3): 867-873.
[40] Hartmann A, Hurek T. Effect of carotenoid overproduction on oxygen tolerance of nitrogen fixation in Azospirillum brasilense Sp7. Microbiology, 1988, 134(9): 2449-2455. DOI:10.1099/00221287-134-9-2449
[41] Singh S, Brocker C, Koppaka V, Chen Y, Jackson BC, Matsumoto A, Thompson DC, Vasiliou V. Aldehyde dehydrogenases in cellular responses to oxidative/ electrophilicstress. Free Radical Biology and Medicine, 2013, 56: 89-101. DOI:10.1016/j.freeradbiomed.2012.11.010
[42] Ohsawa I, Nishimaki K, Yasuda C, Kamino K, Ohta S. Deficiency in a mitochondrial aldehyde dehydrogenase increases vulnerability to oxidative stress in PC12 cells. Journal of Neurochemistry, 2003, 84(5): 1110-1117. DOI:10.1046/j.1471-4159.2003.01619.x
[43] White WH, Skatrud PL, Xue ZX, Toyn JH. Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for β-alanine biosynthesis in Saccharomyces cerevisiae. Genetics, 2003, 163(1): 69-77.
[44] El Golli-Bennour E, Bach H. Hsp70 expression as biomarkers of oxidative stress: mycotoxins' exploration. Toxicology, 2011, 287(1/3): 1-7.
[45] Ilbert M, Horst J, Ahrens S, Winter J, Graf PCF, Lilie H, Jakob U. The redox-switch domain of Hsp33 functions as dual stress sensor. Nature Structural & Molecular Biology, 2007, 14(6): 556-563.