微生物学报  2019, Vol. 59 Issue (5): 799-808   DOI: 10.13343/j.cnki.wsxb.20180298.
http://dx.doi.org/10.13343/j.cnki.wsxb.20180298
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

熊有威, 蒋继宏, 秦盛. 2019
Youwei Xiong, Jihong Jiang, Sheng Qin. 2019
拟孢囊菌属放线菌的研究进展
Recent advances on the genus Kibdelosporangium
微生物学报, 59(5): 799-808
Acta Microbiologica Sinica, 59(5): 799-808

文章历史

收稿日期:2018-07-05
修回日期:2018-09-17
网络出版日期:2018-12-14
拟孢囊菌属放线菌的研究进展
熊有威 , 蒋继宏 , 秦盛     
江苏师范大学生命科学学院, 江苏省药用植物生物技术重点实验室, 江苏 徐州 221116
摘要:拟孢囊菌属(Kibdelosporangium)是一个经典的丝状放线菌类群。自Shearer等于1986年建立该属以来,不断有新的菌株从不同生境中被纯培养分离得到,目前已有效发表8个种、2个亚种。拟孢囊菌属作为稀有放线菌属,是获得新型抗生素类次生代谢产物的重要资源。本文结合我们分离到的一株该属菌株的功能研究、基因组分析和相关文献资料,系统综述了拟孢囊菌属放线菌的建立、分类学特征、属内种的分布、活性次级代谢产物的发现以及其他功能应用和开发前景,以期为该属其他新分离菌株的分类鉴定、新颖次级代谢产物的发现、功能基因资源的挖掘与开发提供借鉴。
关键词拟孢囊菌属    分类    代谢产物    应用    
Recent advances on the genus Kibdelosporangium
Youwei Xiong , Jihong Jiang , Sheng Qin     
Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
Abstract: The genus Kibdelosporangium is a classical group of actinomycetes. Since the establishment of this genus in 1986 by Shearer et al., new strains have been isolated from different habitats by pure culture methods, and 8 species and 2 subspecies have been published. Kibdelosporangium is a rare actinomycete genus and an important resource for obtaining new secondary metabolites. Based on the function and genome analysis of a newly isolated strain and the related literature of the genus Kibdelosporangium, we systematically summarize the research advances of the genus Kibdelosporangium, including the genus establishment, taxonomic characteristics, distribution of the species, the discovery of active secondary metabolites and other functional applications and development prospects. This review provides references for the classification and identification of other new isolates, the discovery of novel secondary metabolites, and the exploitation of functional gene resources from the genus Kibdelosporangium in the future.
Keywords: Kibdelosporangium    taxonomy    secondary metabolites    application    

自1943年美国微生物学家Waksman从链霉菌中发现链霉素以来,放线菌一直是人类发现抗生素的主要微生物类群。但是伴随着细菌耐药性问题日趋严重、以及不断出现的新型疾病,当前发现新的有效抗生素面临着前所未有的挑战。非链霉菌属的稀有放线菌广泛分布于各种环境中,常具有独特的形态及生理特点,也能和链霉菌属一样能产生结构新颖、活性独特的生物活性药物,如庆大霉素、红霉素、万古霉素、利福平等已成功应用于临床[1]。由于从链霉菌中发现新抗生素药物的几率越来越小,从稀有放线菌中寻找新的抗生素显得至关重要。近年来,随着微生物纯培养分离技术的不断发展,越来越多不同生境来源的稀有放线菌资源被发掘出来。同时,伴随着高效基因组挖掘(genome mining)等技术的应用,从稀有放线菌中发现新型活性产物的报道显著增加,特别是海洋来源和植物内生稀有放线菌因被发现产生结构新颖、活性显著的新次级代谢产物而备受关注[2-5]

拟孢囊菌属(Kibdelosporangium)是一个经典的丝状、稀有放线菌类群,隶属于放线菌门(Actinobacteria)放线菌纲(Actinobacteria)假诺卡氏菌亚目(Pseudonocardineae)假诺卡氏菌科(Pseudonocardiaceae),目前包括8个有效描述种,2个亚种,模式种为荒漠拟孢囊菌(Kibdelosporangium aridum)[6]。该属的菌株广泛分布于沙漠、稀土矿、根际土壤、植物和地衣等环境,具有多种生物学功能,其中最引人注目的特点是可以产生结构新颖的次生代谢产物,如糖肽类抗生素aridicins和kibdelins等[7-8]。该属菌株还具有生物降解聚乳酸(polylactide,PLA)的功能,如菌株K. aridum能够完全降解高分子量的PLA,可以有效地用于含有聚乳酸的塑料废物处理中[9]。同时,该属菌株是一类安全的微生物,未有病原菌的报道。因此,拟孢囊菌属菌株具有产生多种活性代谢产物和降解酶的潜力,在新药开发、环境污染处理与修复等领域具有较大的研究和开发应用价值。本文对拟孢囊菌属的分类学、生态分布、基因组学及应用研究进展进行了综述,并对未来该属资源的深入研究进行了展望。

1 拟孢囊菌属的建立及研究现状 1.1 拟孢囊菌属的建立与分类学特征

1986年,Shearer等在对特殊环境来源的微生物进行抗生素产生菌筛选过程中,从美国亚利桑那州皮马县收集的沙漠土壤中获得一株产丝放线菌SK & F-AAD-216T,该菌株具有基内菌丝与气生菌丝的分化,气生菌丝形成直的或不规则弯曲的孢子链和拟孢囊结构,形态学特征与游动放线菌科(Actinoplanaceae)的放线菌较为相似,但是拟孢囊结构具有发育良好的壁,孢囊内不仅有孢子,而且还有菌丝,孢子直接在拟孢囊发芽,孢子不游动,无束丝,不同于已有的游动放线菌。菌株SK & F-AAD-216T具有Ⅳ型细胞壁,不存在枝菌酸,全细胞糖为A型及少量的马杜拉糖。综合其表型及化学分类特征,以菌株SK & F-AAD-216T为模式生物,建立了1个新属——拟孢囊菌属(Kibdelosporangium),模式种为荒漠拟孢囊菌Kibdelosporangium aridum[6]

该属菌株气生菌丝多为白色,棒状孢子链为长直线状、不规则弯曲,有拟孢囊状结构且无孢子释放,拟孢囊结构多为圆形,直径约为9–22 μm。基内菌丝体多呈放射状排列,菌落为薄层凸起,无光泽,革兰氏染色呈阳性,不耐酸,适宜生长的pH范围为pH 5–8,生长温度在16–36 ℃;能够利用糖和糖醇等多种有机物为唯一碳源和能源生长,生长较为缓慢。目前发现的菌株中,只有K. philippinenseK. banguiense具有硝酸盐还原能力,能够产生H2S气体的只有K. phytohabitans[6, 10-12]。该属成员的细胞壁肽聚糖均含有meso-DAP、Ⅳ型细胞壁,不含有枝菌酸;全细胞水解糖组分包括阿拉伯糖、半乳糖、葡萄糖、核糖、甘露糖、鼠李糖等;优势甲基萘醌组分主要为MK-9(H4),部分菌株含有少量MK-8(H4)、MK-9(H6)、MK-10(H4)等;磷酸类脂组分主要为磷脂酰甘油(PG)和磷脂酰乙醇胺(PE),部分菌株还含有磷脂酰肌醇(PI)、未知的磷脂(PL)和二磷脂酰甘油(DPG)等;优势脂肪酸组成为iso-C13:0、iso-C14:0、anteiso-C17:0、iso-C16:0以及不饱和脂肪酸C17:1ω6c。拟孢囊菌属成员的基因组DNA (G+C)mol%含量为64.9%–67.3%[6, 10-15]

1.2 拟孢囊菌属及其近源属

拟孢囊菌属隶属于假诺卡氏菌科(Pseudonocardiaceae),假诺卡氏菌科的16S rRNA的特征性核苷酸位点包括211(G)、480(U)和142:221(C-G)[16]。目前,假诺卡氏菌科囊括了假诺卡氏菌属(Pseudonocardia)、拟无枝酸菌属(Amycolatopsis)、糖单孢菌属(Saccharomonospora)、糖多孢菌属(Saccharopolyspora)等34个属,假诺卡氏菌属为其模式属。在基于假诺卡氏菌科相关菌株16S rRNA基因序列构建的系统进化树上,拟孢囊菌属各成员聚在一起形成一个稳定的分支,并与卷曲放线菌属(Actinocrispum)、拉贝达氏菌属(Labedaea)、假诺卡氏菌属(Pseudonocardia)、长丝菌属(Longimycelium)等属的关系较近(图 1)。其中,拟孢囊菌属与2016年建立的Actinocrispum属的16S rRNA基因序列相似性最高,且它们聚在一独立的进化分支上,但在形态上有明显的区别,Actinocrispum属没有形成拟孢囊结构和单个球形孢子,极性脂含有羟基磷脂酰乙醇胺(OH-PE),主要脂肪酸含有iso-C14:0,化学分类特征不同于拟孢囊菌属[17],拟孢囊菌属与其他近缘属的分类学特征的比较结果见表 1

图 1 邻接法构建的基于假诺卡氏菌科各属代表菌株16S rRNA基因序列的系统进化树 Figure 1 Neighbour-joining phylogenetic tree based on 16S rRNA gene sequences of the representative members of the genera of the family Pseudonocardiaceae. Bar, 1% sequence divergence.

表 1. 拟孢囊菌属及相关菌属的分类学特征 Table 1. Taxonomy characteristics of the genus Kibdelosporangium and related genera
Characteristic Kibdelosporangium[6] Actinocrispum[17] Labedaea[18] Longimycelium[19] Pseudonocardia[20]
Aerial mycelium + + + + Variable
Sporangium-like structures +
Whole-cell sugars Ara, Gal, Glu Rha, Rib, Ara, Gal, Glu Glc, Rha, Gal, Rib, Man, Ara, Xyl Xyl, Gal, Gal, Ara, Gal
Polar lipidsd PE, PI, PME, PG, DPG PE, DPG, PI, OH-PE DPG, PDE, PG, PI, PL, L PE, PC, DPG, PG, PI, PIM PE or PC, PME, PI, PG, DPG, GlcNu
Major menaquinone(s) MK-9(H4) MK-9(H4) MK-9(H4) MK-9(H4), MK-9(H6), MK-9(H10) MK-8(H4)
Major fatty acids antiso-C15:0, iso-C16:0, ai-C17:0 iso-C14:0, iso-C15:0, iso-C16:0 iso-C15:0, iso-C16:0 iso-C15:0, iso-C16:0, ai-C17:0 iso-C16:0, C16:0
DNA G+C content (mol%) 64.9–67.3 70.3–71.1 64.2 65.0 98.0–79.0
Ara, arabinose; Gal, galactose; Glc, glucose; Glu, glucose; Mad, madurose; Man, mannose; Rha, rhamnose; Rib, ribose; Xyl, xylose. PE, phophatidylethanolamine; PME, phosphatidyl-N-monomethylethanolamine; OH-PE, hydroxyl-phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIM, phosphatidylinositol mannoside; DPG, diphosphatidylglycerol; PDE, phosphatidyldimethylethanolamine; PC, phosphatidylcholine; GlcNu, N-acetylglucosamine-containing phospholipids; L, unknown lipid; PL, unknown phospholipid.

1.3 拟孢囊菌属的来源及分布

自1986年,Shearer等以K. aridum为模式种建立拟孢囊菌属以来,随着放线菌分离、培养和分类鉴定技术的发展,拟孢囊菌属的其他成员也陆续从多种环境中分离得到。到目前为止,该属共包含了10个有效描述种(两个亚种):K. aridum subsp. aridum[21]K. aridum subsp. largum[21]K. philippinense[10]K. phytohabitans[12]K. lantanae[13]K. banguiense[11]K. metallic[14]K. rhizosphaerae[15]K. rhizovicinum[15]K. kanagawaense[15]。其中,1993年由Koji Tomita等发现的新种Kibdelosporangium albatum于2008年被重新划分为新属Allokutzneria[22]。这些物种以及其他非有效发表菌株分离自不同的生态环境,其中土壤环境是其主要来源,包括沙漠土壤、稀土矿、森林土样和植物根际土壤等。此外,K. kanagawaense为植物内生菌,分离自麦冬根部[15],而K. phytohabitans是本实验室从干热地区药用植物小桐子根中分离到的内生放线菌。此外,从印度近海10–15 m的海洋底泥中、云南地衣共生的放线菌中分离到了拟孢囊菌属的菌株[23-24];最近我们通过16S rRNA基因高通量测序在海岸带盐生植物根际土中也检测到该属的存在[25]

2 拟孢囊菌属的应用研究 2.1 活性天然产物发现与应用

拟孢囊菌属菌株能够产生多种结构新颖、活性独特的天然活性产物,并且已经从该属中分离到多种具有抗菌、抗病毒、抗癌、免疫调节等功能的天然产物,其结构类型丰富多样,包括糖肽类、大环内酯类、聚酮类、抗菌肽等多种(表 2)。早期研究主要集中在Aridicins和Kibdelins等[7-8]万古霉素类糖肽类抗生素的发现,这类抗生素均对革兰氏阳性菌具有广谱抗性。1993年从K. albatum菌中分离到的大环内酯类抗生素Cycloviracins B1和B2,对革兰氏阳性菌、疱疹类病毒均具有很好的抑制活性[27],然而,该菌种在2008年被划分到库兹涅尔氏菌属。拟孢囊菌属菌株的次级代谢产物中也发现了多种聚酮类化合物,例如从Kibdelosporangium sp. MST-108465中分离得到的具有抗癌活性的Isokibdelones[28];并且从Kibdelosporangium sp. MST-108465中还分离得到了含氮杂环化合物Kibdelones A、B、C系列物质,能够抗菌、杀线虫,同时也是具有较好抗增殖活性的天然产物,对多种癌细胞具有抑制活性,其活性可达纳摩尔水平[29]。从日本东京都世田谷区土样中分离到的菌株Kibdelosporangium sp. MJ126-NF4能够产生具有抗革兰氏阳性菌、抗癌、抗病毒活性的Azicemicins[30]。此外,从森林土样中分离到的菌株Kibdelosporangium sp. MA7385能产生新型抗生素Kibdelomycins。Kibdelomycin是第一个真正的新型细菌Ⅱ型拓扑异构酶抑制剂,通过抑制DNA促旋酶和拓扑异构酶Ⅳ的ATP酶活性,进而抑制细菌DNA合成,具有广谱革兰氏阳性菌抗性和应用前景[32-33]。该属菌株产生具体活性天然产物类型及活性见表 2

表 2. 拟孢囊菌属产生的活性代谢物 Table 2. Bioactive metabolites produced by Kibdelosporangium strains
Structure type Compounds Activities Producing strains References
Glycopeptides Aridicins Antimicrobial K. aridum [7]
Aridicin aglycone Antimicrobial K. aridum [26]
Kibdelins (A, B, C1, C2, D) Antimicrobial K. aridum [21]
A 80407 (A & B) Antimicrobial K. philippinensis [3]
Decaplanin Antimicrobial K. deccaensis [3]
Macrolides Cycloviracins B1 and B2 Antibacterial
(Gram-positive), antiviral
K. albatum [27]
Polyketides Isokibdelones Anticancer activity Kibdelosporangium sp. MST-108465 [28]
Kibdelones Antibacterial, nematicidal, antitumor activity Kibdelosporangium sp. MST-108465 [29]
Azicemicins Antibacterial, anticancer, antiviral activity Kibdelosporangium sp. MJ126-NF4 [30]
Antibiotic Peptides JBIR-78, JBIR-95 Antimicrobial activity against
Micrococcus luteus
Kibdelosporangium sp. AK-AA56 [31]
Novel structure
compounds
Kibdelomycins Antibacteria
(Gram-positive), type Ⅱ
topoisomerase inhibitor
Kibdelosporangium sp. MA7385 [32]

2.2 拟孢囊菌属的生物降解功能

聚乳酸(Poly lactic acid,PLA)属于生物可降解脂肪族聚酯,以其良好的机械性能、通透性、透明度、耐热性以及环境友好等特性被认为是最有希望的材料,其在环境中的降解主要依赖微生物的作用,但目前能够快速吸附降解PLA的微生物还较少[34]。近年来,已有相关PLA降解菌株被报道,多为假诺卡氏菌科内相关属的放线菌菌株,包括拟孢囊菌属。研究表明,菌株K. aridum JCM 7912在液体基础培养基中生长时能够降解PLA,并几乎能完全降解高分子量的PLA,其作用机理主要是产生蛋白酶来进行降解[35]。因此,该属菌株在减轻与治理日益严重的“白色污染”领域具有开发应用潜力。该属菌株还报道具有较强的木质纤维素分解能力,对稻草秸杆具有较强的降解能力,在农作物秸秆降解处理及其高效资源化利用与农村生态环境保护方面具有较好的应用价值[36]

2.3 拟孢囊菌属的植物促生长作用

近年来,存在于植物内部组织的内生放线菌资源及其功能研究引起人们广泛的关注[2, 37]。本实验室从攀枝花干热地区的小桐子根中获得了该属的内生放线菌新种K. phytohabitans KLBMP 1111T[12],对该菌株的促进植物生长特征研究发现其具有产生铁载体与1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性,同时能够在无氮培养基上生长,预示该菌株具有促进植物生长的潜力。通过组培苗回接实验,进一步证明了该拟孢囊菌具有促进宿主植物生长的能力[38]。具有ACC脱氨酶活性的菌株能利用并降解植物产生的乙烯合成前体ACC,降低逆境条件下植物体内生长抑制剂乙烯的浓度,从而促进植物生长,提高植物在逆境条件下的适应能力[39]。我们将菌株K. phytohabitans KLBMP 1111T应用于非宿主植物番茄的盆栽试验,发现干旱胁迫下能够显著促进番茄苗的生长(待发表数据)。因此,对具有促生长特性的拟孢囊菌属成员与宿主植物的互作机制进行深入的研究,对于提高农作物生产与抗逆、抗病等具有重要意义。

3 拟孢囊菌属的基因组研究概况

截止2018年8月,GenBank的Genome数据库和JGI的Genome Portal数据库共收录了5株拟孢囊菌的基因组序列,其中对其次级代谢生物合成基因簇分析报道的是K. phytohabitans KLBMP 1111TKibdelosporangium sp. MJ126-NF4,由本实验室报道的K. phytohabitans KLBMP 1111T菌为完成图。菌株K. phytohabitans KLBMP 1111T基因组序列组装显示,染色体总长度为11759770 bp,有9个rRNAs,73个tRNAs,G+C%含量为68.4%,预测出10205个蛋白编码基因以及大量的调控基因。antiSMASH (3.0.4版本)基因组注释预测显示共含有47个天然产物生物合成基因簇,包括5个非核糖体肽合成酶(NRPS)基因簇,5个Ⅰ型、1个Ⅱ型和2个Ⅲ型聚酮类合成酶(PKS)基因簇,7个NRPS/PKS杂合基因簇。同时其基因组上也发现了植物生长调节剂玉米素、铁载体、ACC脱氨酶生物合成基因,以及纤维素酶、几丁质酶和木聚糖酶等水解酶编码基因[40],间接证明了该菌株的植物生长促进潜能。另一株产生Ⅱ型聚酮类新颖结构抗生素azicemicins的菌株Kibdelosporangium sp. MJ126-NF4基因组分析含有10999个蛋白编码基因,7个rRNAs,63个tRNAs,22个PKS和NRPS类天然产物合成基因簇,包括抗生素azicemicin的生物合成基因簇[41]。基因组研究表明,拟孢囊菌属成员具有丰富的次生代谢产物合成基因簇,具有产生多种活性化合物的潜能。

4 展望

拟孢囊菌属成员是一类重要的资源微生物,过去的几十年研究在该属的抗生素类活性次生代谢产物发现方面已经有惊喜的发现和深入的研究,证明了该属是发现结构新颖、活性独特的新型抗生素的重要来源。此外,广泛的生境来源也显示着该属成员在其他方面的生态功能,如生物降解功能和植物内生菌的促生功能等,显示了该属菌株在生态环境保护与植物生长促进与逆境保护领域的广阔应用潜力。由于该属的菌株生长较为缓慢,目前报道的纯培养菌株还较少,而新菌株的发现将大大提高发现新的次级代谢产物与新功能的概率。因此,未来应该尝试并建立更多新的分离培养方法与策略。在后续的菌种资源发掘过程中,可从拟孢囊菌属菌株的生理学特点出发,设计新的分离方案、优化分离方法,如利用聚乳酸作为唯一碳源的富集培养基进行分离,植物材料可以通过模拟植物体内微环境来设计培养基。一些新的分离技术方法也可以尝试,如基于微流控技术的微生物单细胞分离方法,可以大大提高环境中未培养微生物的可培养概率[42-43]。此外,分析样品16S rRNA基因高通量测序的结果,再根据环境样品特点设计分离条件,可以提高该属菌株的分离培养效率。

基因组学研究显示拟孢囊菌基因组中存在大量参与NRPS、PKS和其他类型次级代谢产物合成的基因簇,以及一些未知功能的基因。后续工作,我们可以利用后基因组时代快速发展起来的基因组挖掘(genome mining)技术、异源表达、转录组学、蛋白质组学和代谢组学等组学技术来激活拟孢囊菌基因组中的“沉默”基因簇,并结合现代高通量筛选技术[44-45],充分挖掘拟孢囊菌基因组中的基因资源,从而发掘更多该属的活性天然产物。总之,新的微生物纯培养方法的发展,以及更多拟孢囊菌属菌株基因组信息的获得,将为拟孢囊菌属资源的收集、生态分布与生态功能的认识及其开发与利用提供新的契机。

References
[1] Lazzarini A, Cavaletti L, Toppo G, Marinelli F. Rare genera of actinomycetes as potential producers of new antibiotics. Antonie van Leeuwenhoek, 2000, 78(3/4): 399-405. DOI:10.1023/A:1010287600557
[2] Qin S, Xing K, Jiang JH, Xu LH, Li WJ. Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, 2011, 89(3): 457-473. DOI:10.1007/s00253-010-2923-6
[3] Tiwari K, Gupta RK. Rare actinomycetes: a potential storehouse for novel antibiotics. Critical Reviews in Biotechnology, 2012, 32(2): 108-132.
[4] Dhakal D, Pokhrel AR, Shrestha B, Sohng JK. Marine rare actinobacteria: isolation, characterization, and strategies for harnessing bioactive compounds. Frontiers in Microbiology, 2017, 8: 1106. DOI:10.3389/fmicb.2017.01106
[5] Tian J, Chen HY, Guo ZY, Liu N, Li J, Huang Y, Xiang WS, Chen YH. Discovery of pentangular polyphenols hexaricins A-C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Applied Microbiology and Biotechnology, 2016, 100(9): 4189-4199. DOI:10.1007/s00253-015-7248-z
[6] Shearer MC, Colman PM, Ferrin RM, Nisbet LJ, Nash Ⅲ CH. New genus of the Actinomycetales: Kibdelosporangium aridum gen. nov., sp. nov.. International Journal of Systematic Bacteriology, 1986, 36(1): 47-54. DOI:10.1099/00207713-36-1-47
[7] Shearer MC, Actor P, Bowie BA, Grappel SF, Nash CH, Newman DJ, Oh YK, Pan CH, Nisbet LJ. Aridicins, novel glycopeptide antibiotics. I. taxonomy, production and biological activity. The Journal of Antibiotics, 1985, 38(5): 555-560. DOI:10.7164/antibiotics.38.555
[8] Folena-Wasserman G, Poehland BL, Yeung EW, Staiger D, Killmer LB, Snader K, Dingerdissen JJ, Jeffs PW. Kibdelins (AAD-609), novel glycopeptide antibiotics. Ⅱ. Isolation, purification and structure. The Journal of Antibiotics, 1986, 39(10): 1395-1406. DOI:10.7164/antibiotics.39.1395
[9] Tokiwa Y, Jarerat A. Biodegradation of poly(L-lactide). Biotechnology Letters, 2004, 26(10): 771-777. DOI:10.1023/B:BILE.0000025927.31028.e3
[10] Mertz FP, Yao RC. Kibdelosporangium philippinense sp. nov. isolated from soil. International Journal of Systematic Bacteriology, 1988, 38(3): 282-286. DOI:10.1099/00207713-38-3-282
[11] Pascual J, González I, Estévez M, Benito P, Trujillo ME, Genilloud O. Description of Kibdelosporangium banguiense sp. nov., a novel actinomycete isolated from soil of the forest of Pama, on the plateau of Bangui, Central African Republic. Antonie van Leeuwenhoek, 2016, 109(5): 685-695. DOI:10.1007/s10482-016-0669-6
[12] Xing K, Bian GK, Qin S, Klenk HP, Yuan B, Zhang YJ, Li WJ, Jiang JH. Kibdelosporangium phytohabitans sp. nov., a novel endophytic actinomycete isolated from oil-seed plant Jatropha curcas L. containing 1-aminocyclopropane-1-carboxylic acid deaminase. Antonie van Leeuwenhoek, 2012, 101(2): 433-441. DOI:10.1007/s10482-011-9652-4
[13] Li D, Huang YJ, Song SY, Xue C, Wu YY, Deng XM. Kibdelosporangium lantanae sp. nov., isolated from the rhizosphere soil of an ornamental plant, Lantana camara L. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(8): 2581-2585. DOI:10.1099/ijs.0.000302
[14] Cao YR, Yang WQ, Dao Y, Hu B, He ZK, Liang LM. Kibdelosporangium metalli sp. nov., isolated from a rare earth mine. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(1): 101-107. DOI:10.1099/ijsem.0.001578
[15] Mingma R, Duangmal K, Ōmura S, Takahashi Y, Matsumoto A. Three novel species of the genus Kibdelosporangium; Kibdelosporangium kanagawaense sp. nov., Kibdelosporangium rhizosphaerae sp. nov. and Kibdelosporangium rhizovicinum sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(6): 1758-1765. DOI:10.1099/ijsem.0.001861
[16] Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(3): 589-608. DOI:10.1099/ijs.0.65780-0
[17] Hatano M, Kinoshita N, Igarashi M, Nomoto A. Actinocrispum wychmicini gen. nov., sp. nov., a novel member of the family Pseudonocardiaceae, isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(11): 4779-4784. DOI:10.1099/ijsem.0.001429
[18] Lee SD. Labedaea rhizosphaerae gen. nov., sp. nov., isolated from rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(8): 1772-1778.
[19] Xia ZF, Guan TW, Ruan JS, Huang Y, Zhang LL. Longimycelium tulufanense gen. nov., sp. nov., a filamentous actinomycete of the family Pseudonocardiaceae. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(8): 2813-2818.
[20] Huang Y, Wang LM, Lu ZT, Hong L, Liu ZH, Tan GYA, Goodfellow M. Proposal to combine the genera Actinobispora and Pseudonocardia in an emended genus Pseudonocardia, and description of Pseudonocardia zijingensis sp. nov.. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(3): 977-982.
[21] Shearer MC, Giovenella AJ, Grappel SF, Hedde RD, Mehta RJ, Oh YK, Pan CH, Pitkin DH, Nisbet LJ. Kibdelins, novel glycopeptide antibiotics. I. Discovery, production and biological evaluation. The Journal of Antibiotics, 1986, 39(10): 1386-1394. DOI:10.7164/antibiotics.39.1386
[22] Labeda DP, Kroppenstedt RM. Proposal for the new genus Allokutzneria gen. nov. within the suborder Pseudonocardineae and transfer of Kibdelosporangium albatum Tomita et al. 1993 as Allokutzneria albata comb. nov.. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(Pt 6): 1472-1475.
[23] Ranjani A, Gopinath PM, Rajesh K, Dhanasekaran D, Priyadharsini P. Diversity of silver nanoparticle synthesizing actinobacteria isolated from marine soil, Tamil Nadu, India. Arabian Journal for Science and Engineering, 2016, 41(1): 25-32. DOI:10.1007/s13369-015-1782-y
[24] Liu CB, Jiang Y, Wang XY, Chen DB, Chen X, Wang LS, Han L, Huang XH, Jiang CL. Diversity, antimicrobial activity, and biosynthetic potential of cultivable actinomycetes associated with lichen symbiosis. Microbial Ecology, 2017, 74(3): 570-584.
[25] Qin S, Feng WW, Zhang YJ, Wang TT, Xiong YW, Xing K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and Environmental Microbiology, 2018, 84(19): e01533-18.
[26] Chung SK, Oh YK, Taylor P, Gerber R, Nisbet LJ. Biosynthetic studies of aridicin antibiotics. Ⅱ. Microbial transformations and glycosylations by protoplasts. The Journal of Antibiotics, 1986, 39(5): 652-659. DOI:10.7164/antibiotics.39.652
[27] Tsunakawa M, Komiyama N, Tenmyo O, Tomita K, Kawano K, Kotake C, Konishi M, Oki T. New antiviral antibiotics, cycloviracins B1 and B2. I. Production, isolation, physico-chemical properties and biological activity. The Journal of Antibiotics, 1992, 45(9): 1467-1471. DOI:10.7164/antibiotics.45.1467
[28] Ratnayake R, Lacey E, Tennant S, Gill JH, Capon RJ. Isokibdelones: novel heterocyclic polyketides from a Kibdelosporangium sp.. Organic Letters, 2006, 8(23): 5267-5270. DOI:10.1021/ol062113e
[29] Ratnayake R, Lacey E, Tennant S, Gill JH, Capon RJ. Kibdelones: novel anticancer polyketides from a rare Australian actinomycete. Chemistry, 2007, 13(5): 1610-1619. DOI:10.1002/(ISSN)1521-3765
[30] Ogasawara Y, Liu HW. Biosynthetic studies of aziridine formation in azicemicins. Journal of the American Chemical Society, 2009, 131(50): 18066-18068. DOI:10.1021/ja907307h
[31] Izumikawa M, Takagi M, Shin-Ya K. JBIR-78 and JBIR-95: phenylacetylated peptides isolated from Kibdelosporangium sp. AK-AA56. Journal of Natural Products, 2012, 75(2): 280-284. DOI:10.1021/np2008279
[32] Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, Dorso K, Lee S, Skwish S, de la Cruz M, Martín J, Vicente F, Genilloud O, Lu J, Painter RE, Young K, Overbye K, Donald RGK, Singh SB. Discovery of kibdelomycin, a potent new class of bacterial type Ⅱ topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chemistry & Biology, 2011, 18(8): 955-965.
[33] Singh SB. Discovery and development of kibdelomycin, a new class of broad-spectrum antibiotics targeting the clinically proven bacterial type Ⅱ topoisomerase. Bioorganic & Medicinal Chemistry, 2016, 24(24): 6291-6297.
[34] Lin J, Zhou JW, Kang Z, Du GC, Chen J. Isolation, identification of poly lactic acid degrading microorganisms and optimization of the degradation process. Microbiology China, 2013, 40(9): 1560-1569. (in Chinese)
林娟, 周景文, 康振, 堵国成, 陈坚. 聚乳酸降解菌株筛选鉴定及降解过程优化. 微生物学通报, 2013, 40(9): 1560-1569.
[35] Jarerat A, Tokiwa Y, Tanaka H. Poly(L-lactide) degradation by Kibdelosporangium aridum. Biotechnology Letters, 2003, 25(23): 2035-2038. DOI:10.1023/B:BILE.0000004398.38799.29
[36] Abdulla HM, El-Shatoury SA. Actinomycetes in rice straw decomposition. Waste Management, 2007, 27(6): 850-853. DOI:10.1016/j.wasman.2006.06.006
[37] Qin S, Feng WW, Wang TT, Ding P, Xing K, Jiang JH. Plant growth-promoting effect and genomic analysis of the beneficial endophyte Streptomyces sp. KLBMP 5084 isolated from halophyte Limonium sinense. Plant and Soil, 2017, 416(1/2): 117-132.
[38] Qin S, Miao Q, Feng WW, Wang Y, Zhu X, Xing K, Jiang JH. Biodiversity and plant growth promoting traits of culturable endophytic actinobacteria associated with Jatropha curcas L. growing in Panxi dry-hot valley soil. Applied Soil Ecology, 2015, 93: 47-55. DOI:10.1016/j.apsoil.2015.04.004
[39] Ali S, Kim WC. Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Frontiers in Microbiology, 2018, 9: 1096. DOI:10.3389/fmicb.2018.01096
[40] Qin S, Feng WW, Xing K, Bai JL, Yuan B, Liu WJ, Jiang JH. Complete genome sequence of Kibdelosporangium phytohabitans KLBMP 1111T, a plant growth promoting endophytic actinomycete isolated from oil-seed plant Jatropha curcas L.. Journal of Biotechnology, 2015, 216: 129-130. DOI:10.1016/j.jbiotec.2015.10.017
[41] Ogasawara Y, Torrez-Martinez N, Aragon AD, Yackley BJ, Weber JA, Sundararajan A, Ramaraj T, Edwards JS, Melançon Ⅲ CE. High-quality draft genome sequence of actinobacterium Kibdelosporangium sp. MJ126-NF4, producer of type Ⅱ polyketide azicemicins, using Illumina and PacBio technologies. Genome Announcements, 2015, 3(2): e00114-15.
[42] Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project's Most Wanted taxa. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27): 9768-9773. DOI:10.1073/pnas.1404753111
[43] Dong L, Chen DW, Liu SJ, Du W. Automated chemotactic sorting and single-cell cultivation of microbes using droplet microfluidics. Scientific Reports, 2016, 6: 24192. DOI:10.1038/srep24192
[44] Du C, van Wezel GP. Mining for microbial gems: integrating proteomics in the postgenomic natural product discovery pipeline. Proteomics, 2018, 18(18): e1700332. DOI:10.1002/pmic.v18.18
[45] Choi SS, Katsuyama Y, Bai L, Deng ZX, Ohnishi Y, Kim ES. Genome engineering for microbial natural product discovery. Current Opinion in Microbiology, 2018, 45: 53-60. DOI:10.1016/j.mib.2018.02.007