微生物学报  2017, Vol. 57 Issue (9): 1383-1391
http://dx.doi.org/10.13343/j.cnki.wsxb.20170247
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

钟晴, 申玉龙, 黄奇洪. 2017
Qing Zhong, Yulong Shen, Qihong Huang. 2017
古菌蛋白激酶的研究进展
Progress in archaeal protein kinases study
微生物学报, 57(9): 1383-1391
Acta Microbiologica Sinica, 57(9): 1383-1391

文章历史

收稿日期:2017-05-14
修回日期:2017-06-26
网络出版日期:2017-07-13
古菌蛋白激酶的研究进展
钟晴, 申玉龙, 黄奇洪     
山东大学微生物技术国家重点实验室, 山东 济南 250100
摘要:磷酸化是蛋白质翻译后修饰(post-translational modification)的主要方式,可由蛋白激酶、磷酸转移酶、磷酸化酶等多种方式催化进行。其中,由蛋白激酶(protein kinases)/磷酸酶(protein phosphatases)介导的可逆的蛋白磷酸化是细胞中信号转导的重要机制,在DNA复制、转录、蛋白质翻译、DNA损伤修复等生命过程中起广泛的调节作用。目前,古菌中蛋白激酶的研究尚属于初期阶段。虽然磷酸化蛋白质组学研究表明,古菌中存在大量的磷酸化蛋白质,但是我们对其具体催化作用的酶及调控机制尚不清楚。本文总结了古菌中已报道的蛋白激酶所参与的生命过程,包括古菌的DNA代谢、细胞代谢、细胞周期和运动机制等四个方面,并对今后的研究提出展望。
关键词: 古菌     蛋白激酶     蛋白磷酸化    
Progress in archaeal protein kinases study
Qing Zhong, Yulong Shen, Qihong Huang     
State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong Province, China
Received 14 May 2017; Revised 26 June 2017; Published online 13 July 2017
*Corresponding author: Qihong Huang, Tel: +86-531-88362928; E-mail: qihonghuang@sdu.edu.cn
Supported by China Postdoctoral Science Foundation (11200077311030)
Abstract: Phosphorylation is one of the main types of protein post-translational modifications, which can be catalyzed by protein kinase, phosphotransferase, and phosphorylase. Among them, reversible protein phosphorylation mediated by protein kinases/phosphatases is an important mechanism of signal transduction in cells and plays regulatory roles in the processes of DNA replication, transcription, protein translation, and DNA repair. The study of protein kinases in archaea is still at the initial stage. Although phosphoproteomics studies showed that there are a large number of phosphorylated proteins in archaea, their specific enzymes and regulation mechanisms involved are still unclear. In this review, we summarized the putative functions of the protein kinases involved in the cellular processes including DNA metabolism, cell metabolism, cell cycle and cell mobility mechanism. Finally, we also proposed the perspectives of studies on archaeal protein kinases.
Key words: archaea     protein kinase     protein phosphorylation    

蛋白质的磷酸化/去磷酸化修饰是由蛋白激酶(protein kinases,PKs)/磷酸酶(protein phosphatases,PPs)催化进行,可逆的蛋白磷酸化是细胞中信号转导的重要机制,让细胞能够快速地应对环境变化。过去人们认为,蛋白质的磷酸化/去磷酸化调节机制从进化时间上来说,出现较晚。Ser、Thr和Tyr的磷酸化修饰是真核生物所独有的特性,是真核生物为了协调不同类型的细胞而“进化”出的复杂的信号传导方式[1]。1964年,有科学家在细菌中发现磷酸化蛋白质[2],1980年在广古菌Halobacterium salinarium中也发现蛋白质共价磷酸化修饰[3],随后细菌和古菌中有越来越多的磷酸化蛋白质被发现,才使人们意识到蛋白质的磷酸化在三种生命形式中广泛存在。

通过对真核生物和古菌模式种的基因组序列对比分析,古菌在细胞内信息处理方面与真核生物有很多相似之处,因此古菌可以作为研究真核生物信息传递的模型[4]。极端嗜热嗜酸古菌Sulfolobus solfataricus的磷酸化蛋白质组学分析结果表明,参与到基础代谢的酶、转录因子、核糖体蛋白质、氨酰tRNA合成酶、腺苷酸环化酶、DNA解旋酶、引物酶、拓扑异构酶、ATP酶、转录起始和延伸因子等蛋白都发生磷酸化修饰[5]。这引发了科研人员极大的研究热情,希望通过对古菌蛋白激酶的研究进一步揭示复杂的真核生物的信号转导通路。

1 古菌

1977年,Woese根据16S/18S rRNA的序列对比分析确立了三域学说,从此古菌作为一个独立的进化单位。古菌是极端环境微生物中的重要组成部分,多生活在如高温、高盐、酸性或碱性等极端环境,当然,在非极端陆地和海洋环境中古菌也是广泛存在的。研究表明,古菌在海洋微生物总量中所占比重超过20%[6],对地球氮循环和碳循环的平衡起着至关重要的作用[7]

古菌主要包括6个门,广古菌门(Euryarchaeota)、泉古菌门(Crenarchaeota)、纳古菌门(Nanoarchaeota)、奇古菌门(Thaumarchaeota)、曙古菌门(Aigarchaeota)和古古菌(Korarchaeota)。广古菌门主要包括嗜盐古菌、产甲烷古菌、嗜热古菌,泉古菌门主要包括嗜酸古菌和超嗜热古菌。形态方面来说,古菌与细菌比较相像,同样是单细胞,没有细胞器和细胞核,有大型环状DNA;但是16S/18S rRNA序列对比分析表明,古菌与真核生物相似度更高,具有更近的进化关系,而且古菌与真核生物在细胞中的信息传递,如DNA复制、转录、翻译以及DNA损伤修复等过程比较相近[8-11]

对于古菌的细胞周期,研究最多的是泉古菌门的硫化叶菌属(Sulfolobus),其细胞周期与真核生物的有丝分裂非常相似,包括G1——复制前的准备时期,S——染色体复制时期,G2——细胞生长变大期,M——基因组分离期,D——细胞分裂期[12-13]。广古菌门的细胞多是多倍体,这增加了研究其细胞周期的困难程度,难以判断细胞周期的时间跨度和染色体复制的阶段[13]

2 古菌蛋白激酶

通过对S. solfataricus中540种不同的蛋白质分析,共发现1318个磷酸化位点,而这些磷酸化的蛋白质几乎全部属于有重要功能的蛋白质家族。在其26种古菌同源基因簇(archaeal clusters of orthologous genes,arCOGs)中,发现有21类被磷酸化[14]。同样在S. acidocaldarius中,共发现801种磷酸化的蛋白质,其中绝大部分属于arCOGs[15]。这些结果表明,蛋白激酶介导的蛋白磷酸化在古菌生命活动中具有广泛的调节功能。目前为止,在真核生物蛋白质的His、Asp、Ser、Thr、Tyr、Cys、Lys和Arg上均发现磷酸化修饰[16],但是在古菌中只发现了Ser、Thr、Asp、His和Tyr上的磷酸化[17-21]

古菌中Ser/Thr/Tyr的磷酸化主要是依赖经典的Hanks型蛋白激酶(又称为eukaryotic protein kinases,ePK)来实现的,ePK在真核生物中可以分为7大类(表 1),其中包括Tyr蛋白激酶(tyrosine kinase,TK)、蛋白激酶A/G/C家族(PK A/G/C families,AGC)、钙离子和钙调蛋白调节的蛋白激酶(calcium and calmodulin-regulated PKs,CAMK)、类似于TK的蛋白激酶(tyrosine kinase-like,TKL)、细胞周期蛋白依赖/细胞分裂素激活/糖原合成酶/类似细胞周期蛋白依赖的蛋白激酶(cycline-dependent/ mitogenactivated/glycogen synthase/cycline-dependent like PK,CMGC)、酵母中STE7、STE11和STE20蛋白的同源蛋白——STE (由酵母细胞中破坏后会阻止交配并且导致不育的sterile基因编码表达,简写为STE)和细胞蛋白激酶(cell kinases,CK1)[22-24]。但是ePK在古菌中的分类还没有完善。以上多种蛋白激酶在古菌、细菌、真核生物中都有分布[25-26],这表明蛋白激酶在细胞生命活动中具有非常重要的作用,暗示着其可能具有较早的进化起源。

表 1. 不同蛋白激酶类型的底物多肽识别区的序列特点和可能的功能[25, 27-28] Table 1. Conserved residues in peptide-substrate recognition subdomain and putative functions of various ePK groups[25, 27-28]
Group Catalytic loop region in subdomain Ⅵb* Activation loop region in subdomain Ⅷ* Function
TK H r D l A a R N
H r D l R t A N
l P i k W m a p E
f P v r W t p l E
Immunology; hemopoiesis; angiogenesis; neurobiology; apoptosis; epidermal growth factor (EGF) signaling
AGC Y R D l K p e N
H R D i K l d N
G T p e y i a P E
G T p d y m a P E
EGF signaling; response to nutritional stress; cytokinesis; lipid metabolism; actin polarization; cell wall integrity; endocytosis
CAMK H r D l k p e N
H l D i k a e N
g t p x y a a P e
g s p x f v a P e
Apoptosis; calcium signaling; responses to nutrient stress; mitosis; response to oxidative stress
TKL h r D l k s x N
h r D l k s x N
g t x r y m a p E
g s x a w m a p E
Immunology; hemopoiesis; angiogenesis; apoptosis
CMGC H r D l K p e N
H t D i K p s N
v T r w Y R a p e
a S l y Y R p p e
Response to osmotic and oxidative stress; initiation of meiosis; mRNA maturation; chromatin reorganization; cell cycle regulation; secondary metabolite production; cell proliferation, differentiation and homeostasis
STE H r D i K g x N
H r D v K a x N
G t p y w M a P E
G t p f y M a P E
Mitogen-activated protein kinase (MAPK) cascades; cell wall integrity pathway; cytokinesis
CK h r D V K p x N
h r D I K p x N
G T a r y a S i m
G T v r y m S i m
Autophagy; endocytosis; DNA repair
*Two most frequent residues at each position are shown. Invariant residues at a given position are indicated by two same upper-case letters. Two different upper-case/lower-case letters at a single position indicate that either of two residues is highly conserved (most frequent in the top row). Positions, in which more than two amino acids are present, are indicated with lower-case letters. Two same lower-case letter indicates that only this residue is highly conserved and ‘x’ indicating poor positional conservation.

典型的Hanks型蛋白激酶(ePKs)有保守的催化结构域,非典型的Hanks型蛋白激酶(non-canonical Hanks-type PKs,aPK)是指具有蛋白激酶活性、但在催化结构域序列上不够保守的蛋白激酶。ePK的催化结构域有12个保守的亚结构域(图 1),N端是ATP结合的区域,C端是底物多肽结合和磷酸基团发生转移的区域,亚结构域Ⅱ中的Lys和Ⅶ中的Asp是非常保守的,主司锚定和定向ATP;亚结构域Ⅵb中保守的Asp能转移磷酸基团[29]。序列对比分析发现,aPK含有ePK的保守的亚结构域Ⅰ、Ⅱ、Ⅵb和Ⅶ,aPKs是亲缘关系较远的ePK蛋白超家族的成员[17]

图 1 典型真核生物蛋白激酶的催化结构域 Figure 1 The ePK catalytic domain. The twelve conserved subdomains are indicated by Roman numerals. The ePK domains consist of N-terminal and C-terminal lobes connected by a hinge region. Binding of Mg-ATP is the main function of the N-terminal lobe and hinge region, while peptide-substrate binding is mediated by the C-terminal lobe. Three important invariant residues for catalytic function are the Lys in subdomain Ⅱ and the Asp in subdomain Ⅶ that function to anchor and orient ATP, and the Asp in subdomain VIb which is the catalytic base in the phosphotransfer reaction[25].

可逆的蛋白磷酸化是细胞中信号转导的重要机制,让细胞能够快速地应对环境变化。古菌中的广古菌门与泉古菌门的磷酸化机制略有差异。广古菌门利用双组分信号调节系统(two-component signal transduction systems,TCS)对His和Asp进行磷酸化,通过ePK来磷酸化Ser/Thr。而泉古菌门缺少TCS,只能利用ePK对Ser/Thr进行磷酸化[17]。有学者推测古菌中的TCS是通过水平基因转移(horizontal gene transfer,HGT)从细菌中获得[18]。古菌中除了ePKs外,还有aPKs,如piD261/Bud32家族、RIO家族、ABC1和AQ578,他们也能磷酸化Ser/Thr残基。

在古菌中,尤其是硫化叶菌中,Tyr的磷酸化非常普遍,但是到目前为止,还没有任何Hanks型Tyr蛋白激酶或者BY蛋白激酶(bacterial protein-tyrosine kinases,即细菌类Tyr蛋白激酶)的报道,这表明古菌中存在未发现的、可以磷酸化Tyr的蛋白激酶。除此之外,几乎每一种古菌中都有编码ePK同源蛋白的基因存在[30]。但是在一种古菌中,这种基因的数目不会很多,通常在1-4个[31]S. solfataricus含有10个ePK的开放阅读框,却存在1318个磷酸化位点,该古菌中磷酸化蛋白质的数量远超已知蛋白激酶的数量,也表明古菌中还存在其他未发现的蛋白激酶[17]

3 蛋白激酶的作用 3.1 DNA代谢

piD261/Bud32是一种aPK,在酵母细胞中能和Kae1 (kinase-associated endopeptidase)与其他的蛋白质一起组成EKC (endopeptidase-like and kinase associated to transcribed chromatin)/KEOPS (kinase,peptidase and other proteins of small size)多蛋白复合体,参与到端粒的延长和重要基因的转录过程中[32]。Kae1蛋白是普遍存在的,但是Bud32 (酿酒酵母)/PRPK (人类)及其同源蛋白只存在于真核生物和古菌中。在古菌中编码这2个蛋白的基因位置毗邻或是融合成1个基因[33],体外研究表明这2个蛋白可以相互作用[34]。古菌Bud32蛋白参与的具体的生命过程尚不清楚,有学者认为与其说piD261/Bud32是蛋白激酶,不如说是ATP酶[35],也有学者认为这2个蛋白依赖一种未知的机制参与到保持基因组完整性的过程中[34]

超嗜热古菌Pyrococcus furiosus在γ射线的照射下具有很高的存活率,研究其存活机制发现,细胞在受到γ射线的照射后的第40分钟起,其中的蛋白激酶PF0364 (RIO2蛋白,见“细胞周期”部分)的mRNA含量会大幅度降低,但RIO1的mRNA水平上调[36]S. solfataricus中UV照射初期可使SsoRIO1上调[37]。本实验室的转录组分析发现,用DNA烷化剂甲基磺酸甲酯(methyl methanesulfonate,MMS)处理S. islandicus后,RIO1同源蛋白下调,而另一个蛋白激酶SiRe_2600却上调了[38]。由此可以推测RIO蛋白可能参与DNA损伤应答或修复,但是具体的机制尚不清楚。

3.2 细胞代谢

在古菌中His和Asp的磷酸化借助双组分信号调节系统(TCS)来实现。经典的TCS由两部分组成,其一是His感应蛋白激酶(histidine sensor kinase,HisK),其二是应答调节蛋白(response regulator,RR)。在Methanosarcinales harundinacea中有FilI-FiLRs TCS,FilI是由Mhar_0446编码的HisK,FiLRs是根据序列推测的RR。实验表明M. harundinacea中的甲烷合成受FilI-FiLRs TCS调节,FilI能够磷酸化FiLR1和FiLR2,且FilI可以合成细胞中信号分子——carboxyl-acyl homoserine lactones,carboxyl-acyl homoserine lactones能够控制细胞形态的转变,最终使细胞内碳代谢流转向甲烷的产生[39]

嗜盐古菌Methanohalophilus portucalensis是研究渗透压调节机制的模式菌株,通过对其149个磷酸化蛋白质的质谱分析发现,26%的蛋白质参与到甲烷和渗透压调节物质的生物合成途径[40]。吡咯赖氨酸(Pyl)能由“琥珀密码子” UAG编码,插入到多个甲胺甲基转移酶中,参与甲烷的合成。M. portucalensis中吡咯赖氨酰tRNA合成酶C端的多个磷酸化位点能够调节其对tRNAPyl的识别能力,影响Pyl-tRNAPyl的合成,进而影响甲胺甲基转移酶活性[40]Methanosarcina acetivorans中的tRNAPyl基因敲除后,细胞丧失了合成甲烷的能力[41]。由此可以推测吡咯赖氨酰tRNA合成酶的磷酸化对甲烷合成的重要性。M. portucalensis在甘氨酸/肌氨酸甲基转移酶(glycine sarcosine N-methyltransferase,GSMT)的催化下合成甜菜碱,调节细胞渗透压,MpGSMT中Thr68的磷酸化对其中的甘氨酸甲基转移酶活性和肌氨酸甲基转移酶活性均有调节作用[40],但是具体起催化作用的酶尚不清楚。

嗜盐古菌Haloferax volcanii研究表明,随着培养基中NaCl浓度的增加,hvIre1p的转录水平会大幅度上升[42]。Ire1p是真核生物中起“传感器”作用的Ser/Thr蛋白激酶,是“解折叠蛋白质应答途径”的感应蛋白,hvIre1p是其在H. volcanii中的同源蛋白[43-44]。一旦环境中的盐度大于嗜盐古菌的最适生长条件,细胞中的一些蛋白质的空间结构发生变化——解折叠,hvIre1p的转录被激活,进而通过磷酸化目的蛋白,启动“解折叠蛋白质适应性应答途径”[42]

3.3 细胞周期

RIO蛋白激酶是aPK的一种,包括RIO1、RIO2、RIO3和RIOB四种类型。真核生物中研究发现,RIO参与到核糖体生物合成、维持染色体的稳定性和细胞周期的正常进行[45]。所有已测序的古菌基因组中都含有RIO基因[45],并且在RIO基因附近有保守的、与转录和翻译调控有关的一系列基因[46],也许RIO与古菌的转录因子、翻译调节因子相互作用,调节细胞周期。但其在古菌中的具体功能仍不清楚。H. volcanii中的体外实验表明,RIO1能够磷酸化蛋白酶体20S核心颗粒的α1蛋白[47],调节蛋白质的降解过程。也有学者通过对真核生物和古菌中RIO同源蛋白的序列和结构对比,认为古菌中的RIO发挥自身ATP酶的活性,而非蛋白激酶活性,参与到核糖体的合成过程中[45]

真核生物翻译起始因子2α (eIF2α)能够调节蛋白质的表达,超嗜热古菌P. horikoshii蛋白激酶(Ph0512p)是真核生物中依赖于双链RNA的eIF2α蛋白激酶(hPKR)的同源蛋白,能够在体外磷酸化古菌eIF2α (即aIF2α)中的Ser48,其和eIF2α中的Ser51同属于调节蛋白活性的磷酸化位点[48],并且该位点在Methanococcus jannaschiiM. thermoautotrophicumArchaeoglobus fulgidusS. solfataricus中都是保守的[48-49]S. solfataricus中也有eIF2α蛋白激酶的同源蛋白,由Sso2291Sso3182Sso3207编码[5]。因此我们可以推测,在古菌中,aIF2α能够通过磷酸化/去磷酸化调节蛋白质合成。

3.4 运动机制

古菌的运动结构——鞭毛在形态结构和动力(ATP供能)上与细菌type Ⅳ菌毛比较相似,而运动机制和细菌鞭毛相同,都是通过运动结构的旋转移动[50]H. salinarum利用鞭毛实现趋利避害[51-52],实验表明当H. salinarum中的一种His蛋白激酶——CheA被敲除后,H. salinarum的趋利避害特性丧失。除此之外,在S. acidocaldarius中,arnS (Saci_1181)能编码Ser/Thr蛋白激酶ArnS (archaellum regulatory network蛋白,Arn蛋白),敲除后虽然古菌鞭毛能够正常装配,但细胞的运动能力降低[53]。ArnA和ArnB能抑制古菌鞭毛蛋白FlaB的表达,将二者敲除后,FlaB含量增加,细胞运动能力提高。然而ArnA和ArnB的功能受Ser/Thr蛋白激酶ArnC、ArnD和Ser/Thr磷酸酶Saci_PP2A共同调节,进而控制FlaB的含量[54]。另外,蛋白质组学研究表明S. acidocaldariusS. solfataricus中的ArnR在体内都被磷酸化,暗示着蛋白磷酸化是调节古菌运动所必需的[14]

S. tokodaii中的ST0829——带有FHA结构域的转录因子能结合在编码鞭毛蛋白的操纵子启动子(ST2519p)区域,调节鞭毛蛋白的表达。而Ser/Thr蛋白激酶ST1565能通过磷酸化抑制ST0829和ST2519p之间的相互作用[55],进而调节细胞的运动能力。

4 总结与展望

本文概述了古菌中的蛋白激酶——ePKs、aPKs及TCS所参与的生命过程,主要包括DNA损伤应答及修复,甲烷合成代谢及渗透压调节、蛋白质转录和翻译以及古菌鞭毛蛋白的表达调控等过程,但是其中仍然有许多具体的过程尚不清楚,蛋白激酶的作用机制尚不明确。目前,我们对古菌的蛋白激酶了解非常欠缺,很多问题亟待解决。与真核生物中Tyr磷酸化的蛋白比例少相反,Sulfolobus中有大量的Tyr磷酸化存在,因此寻找并鉴定新的古菌蛋白激酶,尤其是Tyr蛋白激酶,是一个重要的研究方向。另外,真核生物中数量众多的蛋白激酶和蛋白磷酸酶组成了复杂的信号传递及调控网络,最近报道的细菌Ser/Thr蛋白激酶也存在类似的互作网络[56-57],而古菌中还没有这方面的研究。目前,我们正在开展对冰岛硫化叶菌(S. islandicus)中预测的各个蛋白激酶之间的相互作用及调控网络的研究,并找到2个能磷酸化多个其他蛋白激酶的、可能处于调控上层的蛋白激酶,这将极大提高人们对古菌磷酸化调控方式的认识。

References
[1] Kennelly PJ, Potts M. Fancy meeting you here! A fresh look at "prokaryotic" protein phosphorylation. Journal of Bacteriology, 1996, 178(16): 4759-4764. DOI:10.1128/jb.178.16.4759-4764.1996
[2] Kundig W, Ghosh S, Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proceedings of the National Academy of Sciences of the United States of America, 1964, 52(4): 1067-1074. DOI:10.1073/pnas.52.4.1067
[3] Spudich JL, Stoeckenius W. Light-regulated retinal-dependent reversible phosphorylation of Halobacterium proteins. Journal of Biological Chemistry, 1980, 255(12): 5501-5503.
[4] Allers T, Mevarech M. Archaeal genetics-the third way. Nature Reviews Genetics, 2005, 6(1): 58-73. DOI:10.1038/nrg1504
[5] Kennelly PJ. Protein Ser/Thr/Tyr phosphorylation in the archaea. Journal of Biological Chemistry, 2014, 289(14): 9480-9487. DOI:10.1074/jbc.R113.529412
[6] Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annual Review of Microbiology, 2003, 57: 369-394. DOI:10.1146/annurev.micro.57.030502.090759
[7] Reeve JN, Schleper C. Archaea:very diverse, often different but never bad?. Current Opinion in Microbiology, 2011, 14(3): 271-273. DOI:10.1016/j.mib.2011.04.011
[8] Bell SD, Jackson SP. Transcription and translation in archaea:A mosaic of eukaryal and bacterial features. Trends in Microbiology, 1998, 6(6): 222-228. DOI:10.1016/S0966-842X(98)01281-5
[9] Grohmann D, Werner F. Recent advances in the understanding of archaeal transcription. Current Opinion in Microbiology, 2011, 14(3): 328-334. DOI:10.1016/j.mib.2011.04.012
[10] Geiduschek EP, Ouhammouch M. Archaeal transcription and its regulators. Molecular Microbiology, 2005, 56(6): 1397-1407. DOI:10.1111/j.1365-2958.2005.04627.x
[11] Soppa J. Basal and regulated transcription in archaea. Advances in Applied Microbiology, 2001, 50: 171-217. DOI:10.1016/S0065-2164(01)50006-4
[12] Bernander R, Poplawski A. Cell cycle characteristics of thermophilic archaea. Journal of Bacteriology, 1997, 179(16): 4963-4969. DOI:10.1128/jb.179.16.4963-4969.1997
[13] Lindås AC, Bernander R. The cell cycle of archaea. Nature Reviews Microbiology, 2013, 11(9): 627-638. DOI:10.1038/nrmicro3077
[14] Esser D, Pham TK, Reimann J, Albers SV, Siebers B, Wright PC. Change of carbon source causes dramatic effects in the phospho-proteome of the archaeon Sulfolobus solfataricus. Journal of Proteome Research, 2012, 11(10): 4823-4833. DOI:10.1021/pr300190k
[15] Reimann J, Esser D, Orell A, Amman F, Pham TK, Noirel J, Lindås AC, Bernander R, Wright PC, Siebers B, Albers SV. Archaeal signal transduction:impact of protein phosphatase deletions on cell size, motility, and energy metabolism in Sulfolobus acidocaldarius. Molecular & Cellular Proteomics, 2013, 12(12): 3908-3923.
[16] Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics:frequency analysis and curation of the swiss-prot database. Scientific Reports, 2011, 1: 90. DOI:10.1038/srep00090
[17] Esser D, Hoffmann L, Pham TK, Bräsen C, Qiu W, Wright PC, Albers SV, Siebers B. Protein phosphorylation and its role in archaeal signal transduction. FEMS Microbiology Reviews, 2016, 40(5): 625-647. DOI:10.1093/femsre/fuw020
[18] Koretke KK, Lupas AN, Warren PV, Rosenberg M, Brown JR. Evolution of two-component signal transduction. Molecular Biology and Evolution, 2000, 17(12): 1956-1970. DOI:10.1093/oxfordjournals.molbev.a026297
[19] Casino P, Rubio V, Marina A. The mechanism of signal transduction by two-component systems. Current Opinion in Structural Biology, 2010, 20(6): 763-771. DOI:10.1016/j.sbi.2010.09.010
[20] Shi Y, Belosinschi D, Brouillette F, Belfkira A, Chabot B. Phosphorylation of Kraft fibers with phosphate esters. Carbohydrate Polymers, 2014, 106: 121-127. DOI:10.1016/j.carbpol.2014.01.070
[21] Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Current Opinion in Microbiology, 2015, 24: 47-52. DOI:10.1016/j.mib.2015.01.005
[22] Leonard CJ, Aravind L, Koonin EV. Novel families of putative protein kinases in bacteria and archaea:evolution of the "eukaryotic" protein kinase superfamily. Genome Research, 1998, 8(10): 1038-1047. DOI:10.1101/gr.8.10.1038
[23] Manning G, Plowman GD, Hunter T, Sudarsanam S. Evolution of protein kinase signaling from yeast to man. Trends in Biochemical Sciences, 2002, 27(10): 514-520. DOI:10.1016/S0968-0004(02)02179-5
[24] Taylor SS, Kornev AP. Protein kinases:evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 2011, 36(2): 65-77. DOI:10.1016/j.tibs.2010.09.006
[25] Hanks SK. Genomic analysis of the eukaryotic protein kinase superfamily:a perspective. Genome Biology, 2003, 4(5): 111. DOI:10.1186/gb-2003-4-5-111
[26] Av-Gay Y, Everett M. The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis. Trends in Microbiology, 2000, 8(5): 238-244. DOI:10.1016/S0966-842X(00)01734-0
[27] Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science, 2002, 298(5600): 1912-1934. DOI:10.1126/science.1075762
[28] Hegedus DD, Gerbrandt K, Coutu C. The eukaryotic protein kinase superfamily of the necrotrophic fungal plant pathogen, Sclerotinia sclerotiorum. Molecular Plant Pathology, 2016, 17(4): 634-647. DOI:10.1111/mpp.12321
[29] Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily:kinase (catalytic) domain structure and classification. FASEB Journal, 1995, 9(8): 576-596.
[30] Ponting CP, Aravind L, Schultz J, Bork P, Koonin EV. Eukaryotic signalling domain homologues in archaea and bacteria. Ancient ancestry and horizontal gene transfer. Journal of Molecular Biology, 1999, 289(4): 729-745. DOI:10.1006/jmbi.1999.2827
[31] Kennelly PJ. Archaeal protein kinases and protein phosphatases:insights from genomics and biochemistry. Biochemical Journal, 2003, 370(2): 373-389. DOI:10.1042/bj20021547
[32] Downey M, Houlsworth R, Maringele L, Rollie A, Brehme M, Galicia S, Guillard S, Partington M, Zubko MK, Krogan NJ, Emili A, Greenblatt JF, Harrington L, Lydall D, Durocher D. A genome-wide screen identifies the evolutionarily conserved KEOPS complex as a telomere regulator. Cell, 2006, 124(6): 1155-1168. DOI:10.1016/j.cell.2005.12.044
[33] Marcotte EM, Pellegrini M, Ng HL, Rice DW, Yeates TO, Eisenberg D. Detecting protein function and protein-protein interactions from genome sequences. Science, 1999, 285(5428): 751-753. DOI:10.1126/science.285.5428.751
[34] Hecker A, Graille M, Madec E, Gadelle D, Le Cam E, van Tilbergh H, Forterre P. The universal Kae1 protein and the associated Bud32 kinase (PRPK), a mysterious protein couple probably essential for genome maintenance in archaea and eukarya. Biochemical Society Transactions, 2009, 37(Pt 1): 29-35.
[35] Perrochia L, Guetta D, Hecker A, Forterre P, Basta T. Functional assignment of KEOPS/EKC complex subunits in the biosynthesis of the universal t6 A tRNA modification. Nucleic Acids Research, 2013, 41(20): 9484-9499. DOI:10.1093/nar/gkt720
[36] Williams E, Lowe TM, Savas J, DiRuggiero J. Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation. Extremophiles, 2007, 11(1): 19-29. DOI:10.1007/s00792-006-0002-9
[37] Götz D, Paytubi S, Munro S, Lundgren M, Bernander R, White MF. Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biology, 2007, 8(10): R220. DOI:10.1186/gb-2007-8-10-r220
[38] Song XG, Huang QH, Ni JF, Yu Y, Shen YL. Knockout and functional analysis of two DExD/H-box family helicase genes in Sulfolobus islandicus REY15A. Extremophiles, 2016, 20(4): 537-546. DOI:10.1007/s00792-016-0847-5
[39] Zhang GS, Zhang F, Ding G, Li J, Guo XP, Zhu JX, Zhou LG, Cai SC, Liu XL, Luo YM, Zhang GF, Shi WY, Dong XZ. Acyl homoserine lactone-based quorum sensing in a methanogenic archaeon. The ISME Journal, 2012, 6(7): 1336-1344. DOI:10.1038/ismej.2011.203
[40] Wu WL, Lai SJ, Yang JT, Chern J, Liang SY, Chou CC, Kuo CH, Lai MC, Wu SH. Phosphoproteomic analysis of Methanohalophilus portucalensis FDF1T identified the role of protein phosphorylation in methanogenesis and osmoregulation. Scientific Reports, 2016, 6: 29013. DOI:10.1038/srep29013
[41] Mahapatra A, Patel A, Soares JA, Larue RC, Zhang JK, Metcalf WW, Krzycki JA. Characterization of a Methanosarcina acetivorans mutant unable to translate UAG as pyrrolysine. Molecular Microbiology, 2006, 59(1): 56-66. DOI:10.1111/MMI.2006.59.issue-1
[42] Bidle KA. Differential expression of genes influenced by changing salinity using RNA arbitrarily primed PCR in the archaeal halophile Haloferax volcanii. Extremophiles, 2003, 7(1): 1-7.
[43] Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell, 1993, 73(6): 1197-1206. DOI:10.1016/0092-8674(93)90648-A
[44] Welihinda AA, Tirasophon W, Green SR, Kaufman RJ. Protein serine/threonine phosphatase Ptc2p negatively regulates the unfolded-protein response by dephosphorylating Ire1p kinase. Molecular and Cellular Biology, 1998, 18(4): 1967-1977. DOI:10.1128/MCB.18.4.1967
[45] LaRonde NA. The ancient microbial RIO kinases. Journal of Biological Chemistry, 2014, 289(14): 9488-9492. DOI:10.1074/jbc.R113.538090
[46] Esser D, Siebers B. Atypical protein kinases of the RIO family in archaea. Biochemical Society Transactions, 2013, 41(1): 399-404. DOI:10.1042/BST20120317
[47] Humbard MA, Reuter CJ, Zuobi-Hasona K, Zhou GY, Maupin-Furlow JA. Phosphorylation and Methylation of Proteasomal Proteins of the Haloarcheon Haloferax volcanii. Archaea, 2010, 2010: 481725.
[48] Tahara M, Ohsawa A, Saito S, Kimura M. In vitro phosphorylation of initiation factor 2α (aIF2α) from hyperthermophilic archaeon Pyrococcus horikoshii OT3. The Journal of Biochemistry, 2004, 135(4): 479-485. DOI:10.1093/jb/mvh055
[49] She QX, Singh RK, Confalonieri F, Zivanovic Y, Allard G, Awayez MJ, Chan-Weiher CCY, Clausen IG, Curtis BA, De Moors A, Erauso G, Fletcher C, Gordon PMK, Heikamp-de Jong I, Jeffries AC, Kozera CJ, Medina N, Peng X, Thi-Ngoc HP, Redder P, Schenk ME, Theriault C, Tolstrup N, Charlebois RL, Doolittle WF, Duguet M, Gaasterland T, Garrett RA, Ragan MA, Sensen CW, van der Oost J. The complete genome of the crenarchaeon Sulfolobus solfataricus P2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(14): 7835-7840. DOI:10.1073/pnas.141222098
[50] Jarrell KF, Albers SV. The archaellum:an old motility structure with a new name. Trends in Microbiology, 2012, 20(7): 307-312.
[51] Albers SV, Jarrell KF. The archaellum:how archaea swim. Frontiers in Microbiology, 2015, 6: 23.
[52] Alam M, Oesterhelt D. Morphology, function and isolation of halobacterial flagella. Journal of Molecular Biology, 1984, 176(4): 459-475. DOI:10.1016/0022-2836(84)90172-4
[53] Haurat MF, Figueiredo AS, Hoffmann L, Li LL, Herr K, Wilson AJ, Beeby M, Schaber J, Albers SV. ArnS, a kinase involved in starvation-induced archaellum expression. Molecular Microbiology, 2017, 103(1): 181-194. DOI:10.1111/mmi.13550
[54] Reimann J, Lassak K, Khadouma S, Ettema TJG, Yang N, Driessen AJM, Klingl A, Albers SV. Regulation of archaella expression by the FHA and von Willebrand domain-containing proteins ArnA and ArnB in Sulfolobus acidocaldarius. Molecular Microbiology, 2012, 86(1): 24-36. DOI:10.1111/mmi.2012.86.issue-1
[55] Duan X, He ZG. Characterization of the specific interaction between archaeal FHA domain-containing protein and the promoter of a flagellar-like gene-cluster and its regulation by phosphorylation. Biochemical and Biophysical Research Communications, 2011, 407(1): 242-247.
[56] Shi L, Pigeonneau N, Ravikumar V, Dobrinic P, Macek B, Franjevic D, Noirot-Gros MF, Mijakovic I. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues. Frontier in Microbiology, 2014, 5: 495.
[57] Baer CE, Iavarone AT, Alber T, Sassetti CM. Biochemical and spatial coincidence in the provisional Ser/Thr protein kinase interaction network of Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289(30): 20422-20433. DOI:10.1074/jbc.M114.559054