微生物学报  2016, Vol. 56 Issue (5): 731-739
http://dx.doi.org/10.13343/j.cnki.wsxb.20150289
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

唐敏, 李丽, 肖蓉
Min Tang, Li Li, Rong Xiao
嗜麦芽寡养单胞菌胞外蛋白酶功能研究进展
Progress on the functions of extracellular proteases from Stenotrophomonas maltophilia-A review
微生物学报, 2016, 56(5): 731-739
Acta Microbiologica Sinica, 2016, 56(5): 731-739

文章历史

收稿日期: 2015-07-01
修回日期: 2015-09-19
网络出版日期: 2015-10-21
嗜麦芽寡养单胞菌胞外蛋白酶功能研究进展
唐敏1, 2, 李丽1, 2, 肖蓉1, 2     
1. 辽宁师范大学生命科学学院, 辽宁 大连 116081;
2. 辽宁师范大学七鳃鳗研究中心, 辽宁 大连 116081
摘要: 嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)是广泛分布于自然界的革兰氏阴性杆菌。作为一种新型、与高死亡率相关的条件致病菌,嗜麦芽寡养单胞菌能够导致人类或其他生物感染多种疾病。近年来,越来越多的研究结果显示来自于细菌的胞外蛋白酶是导致宿主发病的关键蛋白质。因此,探究嗜麦芽寡养单胞菌胞外蛋白酶的组成成分和功能将不仅有助于阐明其致病机制,更为今后以其为靶点进行临床治疗奠定基础。本文试图对嗜麦芽寡养单胞菌胞外蛋白酶的性质、功能及其应用进行归纳总结。
关键词: 嗜麦芽寡养单胞菌    胞外蛋白酶    纤溶    应用    
Progress on the functions of extracellular proteases from Stenotrophomonas maltophilia-A review
Min Tang1, 2, Li Li1, 2, Rong Xiao1, 2     
1. School of Life Sciences, Liaoning Normal University, Dalian 116081, Liaoning Province, China;
2. Lamprey Research Center, Liaoning Normal University, Dalian 116081, Liaoning Province, China
Received: 1 July 2015; Revised: 19 September 2015; Published online: 21 October 2015
Foundation Item: Supported by the National Natural Science Foundation of China (31301880), by the China Postdoctoral Science Foundation (2013M541246), by the New Teacher of Specialized Research Fund for the Doctoral Program of Higher Education of China (20112136120002), by the Scientific Research Fund of Liaoning Provincial Education Department (L2011187), by the Scientific and Technological Research Projects of Dalian (2011J21DW014) and by the Program for Liaoning Excellent Talents in University (LJQ2015057)
Corresponding author. Tel: +86-411-85827098; E-mail: xiaorong_lnnu@126.com
Abstract:Stenotrophomonas maltophilia is a gram-negative bacilli, widely distributed in the natural environments. As a novel, conditional pathogenic bacterium associated with high mortality, S. maltophilia could infect human or other organisms. In recent years, more and more studies have shown that extracellular proteases from bacteria are the key proteins which could lead to the incidence of hosts. Therefore, to explore the compositions and functions of extracellular proteases from S. maltophilia will not only help elucidate the pathogenic mechanisms, but also provide information on using them as the targets during the clinical treatment in the near future. This paper summarizes the characterizations, functions and applications of the extracellular proteases from S. maltophilia.
Key words: Stenotrophomonas maltophilia    extracellular proteases    fibrinolysis    application    

嗜麦芽寡养单胞菌(Stenotrophomonas maltophilia)是一种严格需氧的革兰氏阴性直杆菌,属变形菌门、变形菌纲、黄单胞菌目、黄单胞菌科、嗜麦芽寡养单胞菌属,广泛分布于水、土壤、植物根系、人或动物的体表以及消化道中[1, 2, 3, 4]。近年来,陆续有研究报道指出从医院分离出的嗜麦芽寡养单胞菌通常作为条件病原菌能够导致患者的二次感染[5, 6, 7]。因此,嗜麦芽寡养单胞菌是继绿脓杆菌(Pseudomonas aeruginosa)和鲍曼不动杆菌(Acinetobacter baumannii)之后,与医源微生物感染疾病密切相关的非发酵型革兰氏阴性杆菌[5]。此外,相关于嗜麦芽寡养单胞菌的耐药性[7, 8, 9, 10]、致病机制[11, 12]、生物防治[13]以及工业应用[14]等方面均被研究和报道。

1 嗜麦芽寡养单胞菌的研究概况

嗜麦芽寡养单胞菌曾被认为是不具有高毒力的病原菌。但是近年来,源于医院环境中的嗜麦芽寡养单胞菌作为一种新型、与高死亡率相关的条件致病菌[11, 12, 13, 14, 15, 16, 17],通常能够通过感染免疫功能缺陷或过度疲劳的患者而引起多种疾病[3, 6, 18, 19, 20],如软组织感染[12, 17, 21, 22, 23]、脑膜炎[24, 25]和菌血症[26, 27, 28]等。近年来,已有文献尝试探索嗜麦芽寡养单胞菌作为病原菌的致病机制。此外,嗜麦芽寡养单胞菌还具有广谱的多药耐药性[10],能够对新诺明、β内酰胺类抗生素、大环内酯类抗生素、头孢菌素类抗生素、氟喹诺酮类药物、氨基糖苷类抗生素、碳青霉烯类抗生素、氯霉素类抗生素、四环素类抗生素和多粘菌素类抗生素等产生抗性[10, 11, 12]。因此,目前临床上对因感染该单胞菌而引起的疾病尚缺乏有效的治疗药物。为了寻找更有效的治疗药物,已有大量研究尝试探索该菌株的多药耐药机制。

2 嗜麦芽寡养单胞菌胞外蛋白酶研究概况

一般情况下,细菌能够表达并分泌一系列的蛋白酶到胞外,为其生存、生长、侵染宿主组织,以及逃避宿主免疫防御等方面提供有利条件。目前,越来越多的研究结果显示来自于细菌的胞外蛋白酶是导致宿主发病的关键蛋白质[29]。因此,探究细菌胞外蛋白酶的组成成分和功能将不仅有助于阐明细菌的致病机制,更为今后以其为靶点进行临床治疗奠定基础。近年来,来自于国内外的多名学者已对嗜麦芽寡养单胞菌的胞外蛋白酶进行了分离纯化,并对其致病机理、药理学,以及潜在的应用价值等方面进行了深入研究。2007年,Uckan等在临床研究中发现一位患者经骨髓移植后产生静脉血栓并发症,与此同时又感染了由嗜麦芽寡养单胞菌(S.maltophilia)而引起的菌血症[30]。随后的临床跟踪发现该患者中央静脉导管的血栓发生溶解。Uckan等推测嗜麦芽寡养单胞菌中可能存在纤溶活性组分从而导致了该患者的血栓溶解[30]。该项研究的发现将有助于在嗜麦芽寡养单胞菌中寻找高纤溶活性的组分,并有望作为新型溶栓剂的辅助因子而应用于临床。2015年,Wang等从家蚕(bombyx mori)消化道内分离出嗜麦芽寡养单胞菌(S.maltophilia),并发现其分泌的蛋白酶能够帮助家蚕对营养物质的消化以及对桑叶的吸收[31]。因此,对于嗜麦芽寡养单胞菌胞外蛋白酶的深入研究将为今后阐明该菌株的致病机制及新型治疗药物的研发开辟了新的道路,具有重要的医疗价值和实践意义。本文针对嗜麦芽寡养单胞菌胞外蛋白酶的性质、功能及其应用进行了归纳总结。

2.1 引起细胞毒性相关蛋白酶

2006年,耿毅等从斑点叉尾鲴(lctalunes punctatus)的肝脏和肾脏组织中分离并鉴定出一株嗜麦芽寡养单胞菌CCF00024菌株(S.maltophilia strain CCF00024,GenBank登录号AY970826)[32]。前期研究结果显示该菌株的胞外分泌物具有蛋白水解酶活性、脂酶活性、溶血活性,肠毒性以及细胞毒性。此外,有研究报道该菌株的胞外分泌物能够导致斑点叉尾鲴的死亡。耿毅等通过硫酸铵沉淀、DEAE Sephadex A50阴离子交换层析和Sephadex G100凝胶层析等方法从该菌株的胞外上清液中成功分离纯化出一个分子量为20.76 kDa的蛋白酶。细胞毒性检测实验结果显示该蛋白酶不仅能够溶解多种动物红细胞,还具有细胞毒性、肠毒性和明显的免疫原性。综上,作者推测该蛋白酶很有可能在嗜麦芽寡养单胞菌的感染过程中发挥重要作用。

2.2 逃避宿主免疫防御监测相关蛋白酶

2002年,StmPr1蛋白酶(StmPr1 Protease,GenBank AJ291488)是Windhorst等从医源嗜麦芽寡养单胞菌(S.maltophilia)胞外分泌物中分离出的一种碱性丝氨酸蛋白酶,分子量为47 kDa[11]。临床研究结果显示嗜麦芽寡养单胞菌能够通过引起组织损伤而导致严重的感染,如肺出血、软组织感染和菌血症等[33, 34, 35, 36, 37]。StmPr1蛋白酶的作用机制可能为:首先,StmPr1蛋白酶能够通过降解结缔组织中的胶原蛋白和纤连蛋白从而破坏组织并导致大量出血。虽然此时宿主凝血级联反应激活,但是,StmPr1蛋白酶还能够通过降解血液中的纤维蛋白原以阻止血液凝固,最终导致宿主血流不止;其次,StmPr1蛋白酶的活性不受血清抑制剂(如α-抗胰蛋白酶或α2-巨球蛋白)的影响,这说明StmPr1蛋白酶不能激活宿主的免疫防御系统。综上数据表明来源于嗜麦芽寡养单胞菌的StmPr1蛋白酶作为一个病原因子,能够完好的逃脱宿主的免疫防御系统监视,最终导致疾病的发生。因此,作者推测StmPr1蛋白酶很可能成为药物靶点而应用于临床。

2007年,黄小丽等以耿毅分离的嗜麦芽寡养单胞菌CCF00024菌株进行研究,采用硫酸铵盐析,DEAE SephadexA-50凝胶层析等方法从该CCF00024菌株胞外产物中分离纯化出一种分子量为45.7 kDa的单一蛋白酶[38]。研究证实该蛋白酶的热稳定性较弱,其最适温度为20 ℃,最适pH为9.0。其酶活性不受PMSF影响,但部分金属离子如Ca2+、Hg2+和Cu2+能使其活性明显下降;EDTA则能够完全抑制该蛋白酶的活性,而Co2+却能增强其活性。这表明该蛋白酶为碱性金属蛋白酶。细胞毒性检测实验结果显示该蛋白酶能够对非洲绿猴肾细胞(Vero细胞)产生毒性。因此,作者推测该蛋白酶很可能是导致小鼠或斑点叉尾鮰患病的又一个重要致病因子。作者推测其致病机理可能是:首先,该胞外蛋白酶作用于细胞的膜系统,造成细胞通透性的增强,进而导致细菌在体内扩散;其次,该蛋白酶还能够作用于血液中的免疫球蛋白和补体系统,通过逃避宿主的免疫防御检测,破坏机体免疫机能,最终导致小鼠或斑点叉尾鲴发病死亡。综上,这个分子量为45.7 kDa的胞外蛋白酶在嗜麦芽寡养单胞菌感染小鼠或斑点叉尾鮰并致其发病过程中发挥了非常重要的作用。因此,本研究推测该蛋白酶有可能作为潜在的药物靶点而用于治疗与嗜麦芽寡养单胞菌感染相关的疾病。

2.3 导致线虫死亡相关蛋白

近年来,已有文献报道从土壤样品中分离出的嗜麦芽寡养单胞菌G2菌株(S.maltophilia strain G2)能够抑制线虫的存活。2009年,Huang等采用硫酸铵沉淀和阴离子交换层析的方法从该单胞菌G2菌株的胞外粗蛋白中分离纯化出一种分子量为28 kDa的丝氨酸蛋白酶[39]。该蛋白酶能够降解线虫的角蛋白,并导致多种类型线虫的死亡。此外,PMSF(phenylmethylsulphonyl fluoride)能够完全抑制该丝氨酸蛋白酶的蛋白水解酶活性。N末端测序结果显示NCBI数据库中没有与其相似的序列,表明该丝氨酸蛋白酶为新分离纯化出的、具有毒性的蛋白酶,可能是导致线虫死亡的重要分子。但是,该胞外蛋白酶的致病机制还尚未被报道,还需进一步深入研究。

2.4 抗菌蛋白质复合物

Maltocin P28是Liu等从嗜麦芽寡养单胞菌P28菌株(S.maltophilia strain P28)中分离出的、具有抗菌活性的细菌素[40]。电泳检测结果显示maltocin P28主要由分子量为43 kDa和20 kDa的2个蛋白条带组成。电镜观察结果显示maltocin P28的结构就像一个会收缩的、但不灵活的噬菌体尾部。除此之外,Liu等还证实了组成maltocin P28的两个蛋白质基因定位于嗜麦芽寡养单胞菌的p28染色体上。嗜麦芽寡养单胞菌的maltocin基因簇由23个开放阅读框组成。Maltocin的第17段开放阅读框(open reading frame 17,ORF17)和第18段开放阅读框(open reading frame 18,ORF18)分别编码maltocin P28的2个蛋白质。与此同时,ORF17和ORF18分别与编码P2噬菌体中尾鞘蛋白gpFI和尾管蛋白gpFⅡ的开放阅读框相似。抗菌活性分析结果显示maltocin P28能够导致38种嗜麦芽寡养单胞菌(共81株)的死亡,且对胰蛋白酶、蛋白激酶K以及温度敏感。因此,maltocin P28非常有可能代替抗生素用于治疗由嗜麦芽寡养单胞菌感染而引起的相关疾病。

2.5 纤溶活性蛋白酶

除了上文我们提到StmPr1蛋白酶具有纤溶活性,王高学等还从青海省玉树藏族自治州海拔3300 m的泥土中筛选、分离出具有纤溶活性的嗜麦芽寡养单胞菌DR929菌株(S.maltophilia strain DR929)。通过疏水层析及离子交换层析技术,王高学等已从浓缩后的DR929菌株胞外上清液中分离纯化出一种分子量为28.3 kDa的蛋白酶[41]。纤维蛋白平板法测定该蛋白酶具有纤溶活力。由于该蛋白酶具有纤溶活性,因此可被作为潜在的溶栓药物而应用于临床。

此外,闫志勇等还从双齿围沙蚕(Perinereis aibuhitensis Grube)的消化道中分离出1株嗜麦芽寡养单胞菌D2菌株(S.maltophilia strain D2),并证实该菌株胞外上清液能够分泌具有纤溶活性的蛋白水解酶。通过硫酸铵沉淀、阴离子交换层析以及凝胶过滤层析技术,闫志勇等已从该菌株的上清液中分离纯化出一种分子量为42 kDa,等电点为9.17的嗜麦芽寡养单胞菌蛋白酶(S.maltophilia protease,SMP)[42]。脱脂蛋白平板法检测结果显示SMP具有极强的蛋白水解活性,其最适酶活力条件为:pH 9.0;温度为60 ℃。金属离子如K+和Mg2+等能够增强SMP的活性;而EDTA和PMSF却能够强烈抑制该酶的活力。此外,SMP还具有较宽的温度和pH范围,在温度为55 ℃以下,pH为6-9的环境中均具有较好的稳定性。体外实验(试管凝块法和纤维蛋白平板法)和体内实验(大鼠动静脉旁路血栓模型)结果证实SMP同时具有降解纤维蛋白原和纤维蛋白的活性,并呈现一定的剂量关系。因此,SMP作为一种金属依赖的碱性丝氨酸蛋白酶具有抗凝和溶栓的双重作用。作者期许在不久的将来SMP能够有望开发成新型抗凝溶栓药物而应用于临床。

2.6 工业应用蛋白酶

2002年,De等将能够降解羽毛的嗜麦芽寡养单胞菌(又称黄单胞菌[43, 44, 45, 46])POA-1菌株(Xanthomonas maltophilia strain POA-1)与羽毛粉末汤一起培养[47]。目的是使羽毛中的主要成分角蛋白作为POA-1菌株唯一的碳源和氮源,从而促使该菌株能够分泌降解角蛋白的胞外蛋白酶。De等通过采用离心、透析、阴离子交换层析、超滤、疏水层析、分子筛和强阳离子交换层析等方法已从该菌株的上清液中分离纯化出一种分子量为36 kDa的丝氨酸肽链内切酶。荧光酶标仪检测结果显示该蛋白酶能够水解角蛋白,其酶活性最适pH为9.0,温度为60 ℃。除了角蛋白,该丝氨酸蛋白酶还对偶氮角蛋白、偶氮酪蛋白,以及一些荧光多肽底物具有降解作用。

2005年,Miyaji等以酪蛋白作为唯一碳源从土壤中筛选出嗜麦芽寡养单胞菌S-1菌株(S.maltophilia strain S-1),并从该菌株上清液中分离出一种分子量约为40 kDa的胞外碱性蛋白酶,嗜麦芽寡养单胞菌蛋白酶-1(S.maltophilia Protease-1,SmP-1)[48]。SmP-1的N末端序列为NH2-SASAPMVSGVAALVLE。经BLAST序列比对后发现目前尚无已知蛋白质的N末端序列与其相似。这说明SmP-1是一种新发现的蛋白质。活性检测结果显示SmP-1水解酪蛋白的最适pH为12.0,温度为50 ℃。SmP-1在极端碱性的pH环境中以及高温条件下依然具有非常好的稳定性。此外,SmP-1还能够水解玉米的主要成分玉米蛋白。

2009年,Kuddus等在具有耐低温活性的嗜麦芽寡养单胞菌(S.maltophilia MTCC 7528)中分离纯化出一种分子量为75 kDa的碱性胞外蛋白酶。该胞外蛋白酶具有耐低温及耐碱性环境等特性,是一种稳定的蛋白酶洗涤剂[49]。该蛋白酶的最适pH为10.0,温度为20 ℃,其酶活性能够被Mn2+等金属蛋白酶抑制剂完全抑制,表明其为金属蛋白酶。与普通的商业清洁剂相比,该碱性胞外蛋白酶表现出良好的稳定性与兼容性,同时也展示出在低温条件下能够高效清洗不同污渍的能力,如血渍和草渍等。综上结果均表明,该耐低温的碱性蛋白酶很可能成为低温洗涤剂的添加剂,很可能应用于寒冷地区环境污染的修复。

2013年,Li等从石油污染的土壤样品中分离出1株嗜麦芽寡养单胞菌(S.maltophilia CGMCC 4254),并采用超滤、疏水层析(苯基琼脂糖层析柱)等方法纯化出具有有机溶剂耐受性和低温活性的胞外酯酶S.maltophilia CGMCC 4254 lipase(SML),分子量为52 kDa[50]。有机溶剂稳定性检测结果显示SML在50%甚至100%(V/V)的疏水有机溶剂中具有非常稳定的酶活性。已有研究报道SML在100%纯度的亲水有机溶剂中放置7 d后仍然具有50%以上的酶活力。此外,SML的最适温度为35 ℃。当温度低至为5 ℃时,SML的活力为最大酶活力的57%。因此,SML的有机溶剂耐受性和耐低温活性很可能应用于工业生产过程中。

2015年,Waghmare等从屠宰场的土壤中分离出1株嗜麦芽寡养单胞菌SK菌株(S.maltophilia strain SK),并发现该菌株上清液能够在碱性条件下水解酪蛋白[14]。Waghmare等采用硫酸铵沉淀及阴离子交换层析的方法已从其上清液中分离纯化出一种分子量为98 kDa的碱性蛋白酶(最适pH为9.0,温度为40 ℃)。活性检测结果显示金属离子Ca2+、Mg2+和Fe3+能够完全抑制该碱性蛋白酶的活性。但是该碱性蛋白酶却在多种与水相溶的有机溶剂中显示出非常稳定的酶活性,包括25%(V/V)的乙醇、甲醇和异丙醇等有机溶剂。这表明该碱性蛋白酶对有机溶剂具有耐受性,有望应用于清洁剂和医药行业等领域。

3 问题和展望

近年来,国内外的科学家们开始陆续关注嗜麦芽寡养单胞菌的胞外蛋白酶在其侵染宿主过程中所发挥的重要作用。根据比较基因组学、转录组学和生理学方法的分析结果,致病或非致病的嗜麦芽寡养单胞菌在基因组序列上具有高度的相似性[51]。不同种类的嗜麦芽寡养单胞菌是否也会分泌相同种类的胞外蛋白酶呢?当然这还需要我们进一步研究。此外,2014年Thomas等还通过DNA酶琼脂等一系列实验发现嗜麦芽寡养单胞菌的胞外分泌液中还含有胞外脂酶、卵磷脂酶、肝素酶、透明质酸酶以及DNA酶等,并推测这些胞外蛋白酶可能参与调节嗜麦芽寡养单胞菌的代谢及免疫入侵等过程。但是,这些胞外蛋白酶的理化性质、生物学功能及作用机制还尚未报道,仍需我们进一步深入探索[29]

临床研究结果表明嗜麦芽寡养单胞菌作为条件致病菌,能够导致人类多种疾病的发生。近年来,已有大量文献报道嗜麦芽寡养单胞菌分泌的胞外蛋白酶是诱发疾病的关键因素。这些胞外蛋白酶在组织入侵、逃避机体免疫防御反应、产生细胞毒性,以及溶血等方面发挥重要作用(表 1)。因此,深入研究这些胞外蛋白酶的性质、结构,以及功能将为今后阐明该细菌的致病机制奠定了坚实的理论基础,更为今后临床治疗上以其为药物靶点提供理论依据。此外,嗜麦芽寡养单胞菌还能够分泌多种具有耐低温、耐碱性环境的蛋白水解酶以及抗凝溶栓活性成分(表 1)。这为今后以其为模型开发新型抗凝溶栓药物及工业酶提供理论支撑。

表 1. 嗜麦芽寡养单胞菌胞外蛋白酶汇总表 Table 1. The summary table of extracellular proteases from S. maltophilia
StrainProteaseMolecular weight/
kDa
Purification methodsFunctionPotential pathogenicityLiterature
S. maltophiliaStmPr1 Protease47.00Ion exchange and gel filtration chromatography, et al.Immune evasionYes2002, Windhorst et al.
S. maltophilia
strain CCF00024
ECPase45.70Ammonium sulfate precipitation; ion exchange chromatography, et al.Immune evasionYes2007, Huang et al.
S. maltophilia
strain CCF00024
Homolysin20.76Ammonium sulfate precipitation; ion exchange and gel filtration chromatographyCell toxicityYes2006, Geng et al.
S. maltophilia
strain G2
Extracellular protease28.00Ammonium sulfate precipitation; ion exchange chromatography, et al.Nematocidal activityNo2009, Huang et al.
S. maltophilia
strain P28
maltocin P2843.20Polyethylene glycol precipitation; ion exchange chromatography, et al.Bactericidal activityNo2013, Liu et al.
S. maltophilia
strain DR929
Fibrinolytic enzyme28.30Ammonium sulfate precipitation; hydrophobic interaction, ion exchange, and gel filtration chromatography, et al.Fibrinolytic activity2007, Wang et al.
S. maltophilia
strain D2
SMP42.00Ammonium sulfate precipitation; ion exchange and gel filtration chromatographyFibrinolytic activity2007, Yan ZY
Xanthomonas maltophilia
strain POA-1
Alkaline serine endopeptidase36.00Ion exchange, hydrophobic interaction, and gel filtration chromatography, et al.Industrial application2002, De et al.
S. maltophilia
strain S-1
Smp-140.00Ammonium sulfate precipitation; ion exchange and hydrophobic interaction chromatographyIndustrial application2005, Miyaji et al.
S. maltophilia
strain MTCC 7528
Cold-active extracellular alkaline protease75.00Ion exchange chromatographyCold-active detergent2009, Kuddus et al.
S. maltophilia
strain CGMCC 4254
SML52.00Hydrophobic interaction chromatography; ultrafiltration, et al.Industrial application2013, Li et al.
S. maltophilia
strain SK
Alkaline protease98.00Ammonium sulfate precipitation; ion exchange chromatography, et al.Industrial application2015, Waghmare et al.
参考文献
[1] Denton M, Kerr KG. Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clinical Microbiology Reviews, 1998, 11(1):57-80.
[2] Caylan R, Aydin K, Koksal I. Meningitis caused by Stenotrophomonas maltophilia:case report and review of the literature. Annals of Saudi Medicine, 2002, 22(3/4):216-218.
[3] Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 2009, 7(7):514-525.
[4] Sanyal SC, Mokaddas EM. The increase in carbapenem use and emergence of Stenotrophomonas maltophilia as an important nosocomial pathogen. Journal of Chemotherapy, 1999, 11(1):28-33.
[5] Abbott IJ, Slavin MA, Turnidge JD, Thursky KA, Worth LJ. Stenotrophomonas maltophilia:emerging disease patterns and challenges for treatment. Expert Review of Anti-infective Therapy, 2011, 9(4):471-488.
[6] Brooke JS. Stenotrophomonas maltophilia:an emerging global opportunistic pathogen. Clinical Microbiology Reviews, 2012, 25(1):2-41.
[7] Zhao Y, Niu WK, Sun YX, Hao HJ, Yu D, Xu GY, Shang XY, Tang XP, Lu SJ, Yue JJ, Li Y. Identification and characterization of a serious multidrug resistant Stenotrophomonas maltophilia strain in China. BioMed Research International, 2015, 2015:580240.
[8] Chung HS, Kim K, Hong SS, Hong SG, Lee K, Chong Y. The sul1 gene in Stenotrophomonas maltophilia with high-level resistance to trimethoprim/sulfamethoxazole. Annals of Laboratory Medicine, 2015, 35(2):246-249.
[9] García-León G, Ruiz de Alegría Puig C, García de la Fuente C, Martínez-Martínez L, Martínez JL, Sánchez MB. High-level quinolone resistance is associated with the overexpression of smeVWX in Stenotrophomonas maltophilia clinical isolates. Clinical Microbiology and Infection, 2015, 21(5):464-467.
[10] Tanimoto K. Stenotrophomonas maltophilia strains isolated from a university hospital in Japan:genomic variability and antibiotic resistance. Journal of Medical Microbiology, 2013, 62(Pt4):565-570.
[11] Windhorst S, Frank E, Georgieva DN, Genov N, Buck F, Borowski P, Weber W. The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia characterization of the protein and molecular cloning of the gene. Journal of Biological Chemistry, 2002, 277(13):11042-11049.
[12] Kumar S, Bandyopadhyay M, Chatterjee M, Banerjee P, Poddar S, Banerjee D. Stenotrophomonas maltophilia:complicating treatment of ESBL UTI. Advanced Biomedical Research, 2015, 4(1):36-45.
[13] Dunne C, Moënne-Loccoz Y, de Bruijn FJ, O'Gara F. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology, 2000, 146(Pt 8):2069-2078.
[14] Waghmare SR, Gurav AA, Mali SA, Nadaf NH, Jadhav DB, Sonawane KD. Purification and characterization of novel organic solvent tolerant 98 kDa alkaline protease from isolated Stenotrophomonas maltophilia strain SK. Protein Expression and Purification, 2015, 107(4):1-6.
[15] Jang TN, Wang FD, Wang LS, Liu CY, Liu IM. Xanthomonas maltophilia bacteremia:an analysis of 32 cases. Journal of the Formosan Medical Association, 1992, 91(12):1170-1176.
[16] Victor MA, Arpi M, Bruun B, Jønsson V, Hansen MM. Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scandinavian Journal of Infectious Diseases, 1994, 26(2):163-170.
[17] Falagas ME, Kastoris AC, Vouloumanou EK, Rafailidis PI, Kapaskelis AM, Dimopoulos G. Attributable mortality of Stenotrophomonas maltophilia infections:a systematic review of the literature. Future Microbiology, 2009, 4(9):1103-1109.
[18] Roilides E, Butler KM, Husson RN, Mueller BU, Lewis LL, Pizzo PA. Pseudomonas infections in children with human immunodeficiency virus infection. The Pediatric Infectious Disease Journal, 1992, 11(7):547-553.
[19] Vartivarian SE, Papadakis KA, Anaissie EJ. Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection:a disease that is usually severe and complicated. Archives of Internal Medicine, 1996, 156(4):433-435.
[20] Calza L, Manfredi R, Chiodo F. Stenotrophomonas (Xanthomonas) maltophilia as an emerging opportunistic pathogen in association with HIV infection:a 10-year surveillance study. Infection, 2003, 31(3):155-161.
[21] Sakhnini E, Weissmann A, Oren I. Fulminant Stenotrophomonas maltophilia soft tissue infection in immunocompromised patients:an outbreak transmitted via tap water. The American Journal of the Medical Sciences, 2002, 323(5):269-272.
[22] Vartivarian SE, Papadakis KA, Palacios JA, Manning JT, Anaissie EJ. Mucocutaneous and soft tissue infections caused by Xanthomonas maltophilia. Annals of Internal Medicine, 1994, 121(12):969-973.
[23] Wu PS, Lu CY, Chang LY, Hsueh PR, Lee PI, Chen JM, Lee CY, Chan PC, Chang PY, Yang TT, Huang LM. Stenotrophomonas maltophilia bacteremia in pediatric patients-a 10-year analysis. Journal of Microbiology Immunology and Infection, 2006, 39(2):144-149.
[24] Papadakis KA, Vartivarian SE, Vassilaki ME, Vassilaki ME, Anaissie EJ. Stenotrophomonas maltophilia meningitis:report of two cases and review of the literature. Journal of Neurosurgery, 1997, 87(1):106-108.
[25] Yemisen M, Mete B, Tunali Y, Yentur E, Ozturk R. A meningitis case due to Stenotrophomonas maltophilia and review of the literature. International Journal of Infectious Diseases, 2008, 12(6):e125-e127.
[26] Apisarnthanarak A, Mayfield JL, Garison T, McLendon PM, DiPersio JF, Fraser VJ, Polish LB. Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients:a case-control study. Infection Control & Hospital Epidemiology, 2003, 24(4):269-274.
[27] Muder RR, Harris AP, Muller S, Edmond M, Chow JW, Papadakis K, Wagener MW, Bodey GP, Steckelberg JM. Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia:a prospective, multicenter study of 91 episodes. Clinical Infectious Diseases, 1996, 22(3):508-512.
[28] Micozzi A, Venditti M, Monaco M, Friedrich A, Taglietti F, Santilli S, Martino P. Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clinical Infectious Diseases, 2000, 31(3):705-711.
[29] Thomas R, Hamat RA, Neela V. Extracellular enzyme profiling of Stenotrophomonas maltophilia clinical isolates. Virulence, 2014, 5(2):326-330.
[30] Uckan D, Kirazli S, Gür D, Tavil B, Sayinalp N, Akyüz C. Stenotrophomonas maltophilia infection of the central venous catheter and lysis of an old thrombosis in a post-bone marrow transplantation child:implications in the fibrinolytic process. Scandinavian Journal of Infectious Diseases, 2007, 39(4):376-379.
[31] Wang ZG, Sun LH, Cheng J, Liu CL, Tang XF, Zhang HF, Liu Y. The optimization of fermentation conditions and enzyme properties of Stenotrophomonas maltophilia for protease production. Biotechnology and Applied Biochemistry, 2015, doi:10.1002/bab.1361.
[32] Geng Y, Wang KY, Chen DF, Huang XL. Isolation purification and characteristics of the hemolysin produced by Stenotrophomonas maltophilia from Channel catfish. Freshwater Fisheries, 2010, 40(1):61-65. (in Chinese)耿毅, 汪开毓, 陈德芳, 黄小丽. 斑点叉尾鮰嗜麦芽寡养单胞菌溶血素的分离、纯化与特性研究. 淡水渔业, 2010, 40(1):61-65.
[33] Dührsen U, Hollwitz B, Kaulfers PM, Hossfeld DK. Fatal pulmonary hemorrhage in patients with acute leukemia and fulminant pneumonia caused by Stenotrophomonas maltophilia. Annals of Hematology, 1997, 74(4):155-161.
[34] Mori M, Kitagawa T, Sasaki Y, Yamamoto K, Onaka T, Yonezawa A, Imada K. Lethal pulmonary hemorrhage caused by Stenotrophomonas maltophilia pneumonia in a patient with acute myeloid leukemia. Kansenshogaku Zasshi, 2012, 86(3):300-305.
[35] Rousseau A, Morcos M, Amrouche L, Foïs E, Casetta A, Rio B, Le TA, Molina T, Rabbat A, Marie JP, Audouin J. Lethal pulmonary hemorrhage caused by a fulminant Stenotrophomonas maltophilia respiratory infection in an acute myeloid leukemia patient. Leukemia & Lymphoma, 2004, 45(6):1293-1296.
[36] Tamura H, Yamashita S, Kusano N, Suzuki C, Yamaguchi Y, Tanigawa K, Masuhara M, Okita K, Murakami F. Fulminant hepatitis complicated by small intestine infection and massive hemorrhage. Journal of Gastroenterology, 1998, 33(3):412-418.
[37] Ohkoshi Y, Ninomiya H, Mukai HY, Mochizuki N, Hori M, Nagasawa T, Jikuya T, Saida Y. Pseudoaneurysm of the subclavian artery due to Xanthomonas pneumonia in a patient with acute myeloid leukemia:its rupture treated by transcatheter coil embolization. Internal Medicine, 1999, 38(8):671-674.
[38] Huang XL, Wang KY, Geng Y, Su XM, Chen DF. Purification and characterization of extracellular protease of Stenotrophomonas maltophilia isolated from Ictalurus punctatus. Journal of Fisheries of China, 2007, 31(3):317-322. (in Chinese)黄小丽, 汪开毓, 耿毅, 苏秀梅, 陈德芳. 斑点叉尾鮰源嗜麦芽寡养单胞菌胞外蛋白酶的纯化及性质研究. 水产学报, 2007, 31(3):317-322.
[39] Huang XW, Liu JW, Ding JM, He QS, Xiong R, Zhang KQ. The investigation of nematocidal activity in Stenotrophomonas maltophilia G2 and characterization of a novel virulence serine protease. Canadian Journal of Microbiology, 2009, 55(8):934-942.
[40] Liu J, Chen P, Zheng CY, Huang YP. Characterization of maltocin P28, a novel phage tail-like bacteriocin from Stenotrophomonas maltophilia. Applied and Environmental Microbiology, 2013, 79(18):5593-5600.
[41] Wang GX, Liang CJ, Huang HH, Wang JF, Yuan JL. Optimization on fermentation and purification of the fibrinolytic enzyme from Stenotrophomonas maltophilia. China Biotecnology, 2007, 27(9):47-52. (in Chinese)王高学, 梁朝军, 黄海洪, 王建福, 原居林. 嗜麦芽寡养单胞菌(DR-929)纤溶酶的发酵条件优化及其分离纯化. 中国生物工程杂志, 2007, 27(9):47-52.
[42] 闫志勇. 双齿围沙蚕消化道菌群的分析和生物活性物质的研究. 青岛大学博士学位论文, 2007,.
[43] Palleroni NJ, Bradbury JF. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of Systematic Bacteriology, 1993, 43(3):606-609.
[44] Swings J, de Vos P, van Den Mooter M, de Ley J. Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov.. International Journal of Systematic Bacteriology, 2014, 33(2):409-413.
[45] Maes M. Fast classification of plant-associated bacteria in the Xanthomonas genus. FEMS Microbiology Letters, 1993, 113(2):161-165.
[46] Nesme X, Vaneechoutte MS, Orso S, Hoste B, Swings J. Diversity and genetic relatedness within genera Xanthomonas and Stenotrophomonas using restriction endonuclease site differences of PCR-amplified 16S rRNA gene. Systematic and Applied Microbiology, 1995, 18(1):127-135.
[47] de Toni CH, Richter MF, Chagas JR, Henriques JAP, Termignoni C. Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain. Canadian Journal of Microbiology, 2002, 48(4):342-348.
[48] Miyaji T, Otta Y, Shibata T, Mitsui K, Nakagawa T, Watanabe T, Niimura Y, Tomizuka N. Purification and characterization of extracellular alkaline serine protease from Stenotrophomonas maltophilia strain S-1. Letters in Applied Microbiology, 2005, 41(3):253-257.
[49] Kuddus M, Ramteke PW. Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia:production of enzyme and its industrial applications. Canadian Journal of Microbiology, 2009, 55(11):1294-1301.
[50] Li M, Yang LR, Xu G, Wu JP. Screening, purification and characterization of a novel cold-active and organic solvent-tolerant lipase from Stenotrophomonas maltophilia CGMCC 4254. Bioresource Technology, 2013, 148114-120.
[51] Alavi P, Starcher MR, Thallinger GG, Zachow C, Müller H, Berg G. Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 2014, 15:482.