微生物学报  2016, Vol. 56 Issue (1): 143-149
http://dx.doi.org/10.13343/j.cnki.wsxb.20150144
中国科学院微生物研究所,中国微生物学会,中国菌物学会
0

文章信息

王洁, 董新波, 高丽晓, 周冬生, 殷喆, 张义全
Jie Wang, Xinbo Dong, Lixiao Gao, Dongsheng Zhou, Zhe Yin, Yiquan Zhang
H-NS蛋白对副溶血弧菌hcp1的转录调控
Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus
微生物学报, 2016,56(1): 143-149
Acta Microbiologica Sinica, 2016,56(1): 143-149

文章历史

收稿日期:2015-03-31
修回日期:2015-05-28
H-NS蛋白对副溶血弧菌hcp1的转录调控
王洁1, 董新波1, 高丽晓3, 周冬生1, 殷喆1 , 张义全1, 2     
1. 军事医学科学院微生物流行病研究所, 病原微生物生物安全国家重点实验室, 北京 100071;
2. 江苏大学医学院, 江苏镇江 212013;
3. 中国人民解放军总装备部科技信心研究中心门诊部, 北京 100142
摘要: 【目的】研究调控子H-NS对副溶血弧菌T6SS1结构蛋白基因hcp1的转录调控机制。【方法】利用Western blot检测Hcp1蛋白在野生株(WT)和hns基因敲除株(Δhns)中表达水平的差异。提取WT和Δhns的总RNA,采用实时定量RT-PCR的方法验证H-NS对hcp1的转录调控关系。进而采用引物延伸实验研究hcp1的转录起始位点,并根据产物的丰度判断H-NS对hcp1的调控关系。PCR扩增hcp1的整个启动子区DNA序列,并纯化His-H-NS蛋白,通过凝胶阻滞实验(EMSA)验证His-H-NS对hcp1启动子区是否具有直接的结合作用。【结果】 Western blot和实时定量RT-PCR结果显示H-NS能抑制hcp1的表达;引物延伸结果显示hcp1只有一个转录起始位点T(-62)(翻译起始位点为+1),且其转录活性是H-NS和σ54依赖性的;EMSA实验表明H-NS对hcp1的启动子区具有直接的结合作用。【结论】 H-NS能直接结合到hcp1启动子区而抑制其转录表达。
关键词: 副溶血弧菌    H-NS    hcp1    转录调控    
Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus
Jie Wang1, Xinbo Dong1, Lixiao Gao3, Dongsheng Zhou1, Zhe Yin1 , Yiquan Zhang1, 2     
1. State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China;
2. School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China;
3. Outpatient Department, Research Center of Sciences and Technology, PLA General Armament Department, Beijing 100142, China
Abstract:[Objective] To study the transcriptional regulation of the structural components Hcp1 by H-NS in Vibrio parahaemolyticus.[Methods] Expression of Hcp1 in the wide-type(WT) strain and hns mutant(Δhns) were detected by Western blot using rabbit anti-Hcp1 polyclonal antibodies. Total RNAs were extracted from WT and Δhns strains. Quantitative RT-PCR was carried out to calculate the transcriptional variation of hcp1 between WT and Δhns strains, and then primer extension assay was used to detect the transcription start site and the promoter activity(the amount of primer extension product) of hcp1 in WT and Δhns. The entire promoter region of hcp1 was amplified by PCR with ExTaqTM DNA polymerase using WT genomic DNA as the template. The over-expressed His-H-NS was purified under native conditions with nickel loaded HiTrap Chelating Sepharose columns(Amersham). Electrophoretic mobility shift assay(EMSA) was applied to analyze the DNA-binding activity of His-H-NS to hcp1 promoter region in vitro.[Results] Western blot and quantitative RT-PCR results showed that expression of Hcp1 was inhibited by H-NS. The primer extension assay detected only one transcription start site located at 62 bp upstream of hcp1, whose transcription was H-NS and σ54-dependent. EMSA result indicated that His-H-NS was able to bind the promoter DNA region of hcp1.[Conclusion] The expression of hcp1 was directly repressed by H-NS in V. parahaemolyticus.
Key words: Vibrio parahaemolyticus    H-NS    hcp1    transcriptional regulation    

副溶血弧菌(Vibrio parahaemolyticus)是广泛分布于海水、海河交界处及海产品中的一种革兰氏阴性弧菌,也是一种食源性致病菌。 当人们食用被其污染的海产品时,可能会被感染,引起以呕吐、腹泻、发热、头疼等为主要症状的急性胃肠炎,偶见由海水污染伤口而引起的败血病或组织感染,表明副溶血弧菌也有一定的组织入侵能力[1]

副溶血弧菌能表达多种致病性毒力因子,如耐热性直接溶血素(TDH)、TDH 相关溶血素(TRH)、III型分泌系统(T3SS)、VI 型分泌系统(T6SS)等[1, 2]。其中,T6SS是一种由多组分蛋白复合体构成的跨膜“针状”注射装置,其跨膜结构通常由VipA/VipB构成、菌体表面的“针状”结构通常由Hcp构成,而在Hcp顶端有一个由VgrG蛋白构成的3聚体结构[3, 4]。T6SS能将效应蛋白注入动物细胞或其他细菌胞内,引起细胞凋亡或杀灭细菌[3, 4]。副溶血弧菌的大小染色体上分别含有一套T6SS基因位点,分别称为T6SS1和T6SS2。T6SS1常见于临床分离株,在模拟海洋环境条件(2% NaCl和23–30 °C)下表达水平高,主要与副溶血弧菌对宿主细胞粘附活性和对其它种类细菌的杀菌活性有关[5]。T6SS2存在于所有副溶血菌株中,在模拟宿主体内环境条件(0.5% NaCl和37°C)下表达水平高,主要与细胞粘附活性相关[5, 6]

H-NS是一种普遍存在于革兰氏阴性菌中的拟核相关DNA结合蛋白,也是一个整体负调控因子。H-NS对富含AT的DNA序列具有高亲和力,因而其靶基因通常是通过水平转移获得的“外源基因”[7, 8]。H-NS选择性的结合到“外源基因”启动子区序列上负调控基因转录,从而有效避免外源基因的有害表达,并为这些外源性遗传物质整合到细菌基因组中提供先决条件[8]。在副溶血弧菌中,已有研究表明:H-NS能直接负调控关键毒力因子T3SS、TDH和T6SS2相关基因的转录,这些基因都可能是通过水平转移获得的[9, 10]。另外,Dor Salomon等利用Western blot实验证明H-NS对副溶血弧菌T6SS1结构蛋白Hcp1(VP1393)的表达也具有负调控作用,但是并未阐明这种负调控机制是否发生在转录水平上,以及其具体的分子机制[11]。本文中,我们利用Western blot、实时定量RT-PCR、引物延伸及EMSA等实验技术证明了H-NS能直接结合到hcp1的启动子区,进而抑制其转录表达。

1 材料和方法 1.1 材料 1.1.1 菌株和抗体

实验所用的副溶血弧菌RIMD2210633株(野生型,WT;1996年从日本旅游腹泻病人的粪便中分离而得,属O3:K6型大流行菌株,KP+tdh+trh-)及其hns非极性突变株(Δhns)[10]、His-H-NS重组蛋白表达菌、兔抗Hcp1多克隆抗体等均由北京微生物流行病研究所病原微生物国家重点实验室保存。

1.1.2 主要试剂

HI肉汤培养基(2.5% BactoTM heart infusion)购自BD Bioscience;TRIzol Reagent购自Invitrogen公司;Primer Extension System和fmol® DNA Cycle Sequencing System为Promega产品;Micro BCA™ Protein Assay Kit购至Thermo Scientific公司;Taq DNA聚合酶和dNTPs购自Fermentas公司;PCR产物纯化试剂盒购自QIAGEN公司;DNA-free™ Kit购自Amibion公司;LightCycler® 480 SYBR Green Master购自Roche公司;酶标羊抗兔抗体购自SIGMA公司。

1.2 细菌培养

取15 μL甘油菌种接种于15 mL的HI肉汤中(50mL的三角烧瓶,下同),37 ºC下200 r/min培养12–14 h,按1:50稀释接种至15 mL新鲜的HI肉汤中,37 ºC下200 r/min培养至OD620≈1.0,再按1:1000稀释接种至15 mL新鲜的HI肉汤中,37 ºC、200 r/min培养至OD620≈1.0,收集菌体。

1.3 Western blot检测

细菌按1.2的方法培养后,收集菌体,用PBS缓冲液悬起菌体并超声碎菌,4 ºC、12000r/min离心10 min后,弃沉淀取上清,再用Micro BCA™ Protein Assay Kit测定上清中的总蛋白含量。取等总蛋白量的WT和Δhns的裂解上清进行12% SDS-PAGE电泳,而后转移至PVDF膜上,以兔抗Hcp1多克隆抗体做一抗,荧光标记的羊抗兔抗体做第二抗体,进行免疫印记实验分析[12],通过比较特异性条带的差异来判定H-NS对hcp1的调控关系。

1.4 实时定量RT-PCR

提取WT和Δhns的总RNA,用DNA-freeTM Kit (Amibion)消化去除其中可能污染的基因组DNA,并用N6随机引物将其逆转录成cDNA,最后用Roche 的LightCycler system作实时定量RT-PCR分析。以16S rRNA的表达量为内参,利用经典的2-ΔΔCt的方法对靶基因的表达进行相对定量[13]

1.5 引物延伸实验

采用TRIzol法提取WT和Δhns的总RNA,并通过琼脂糖凝胶电泳监测RNA质量。将与hcp1的mRNA互补的特异性引物(见表1) 5′-末端用[γ-32P] ATP (5000 Ci/mmol)进行放射性标记[14]。分别以WT和Δhns的总RNA为模板(总RNA的量一致),利用AMV酶将hcp1的mRNA逆转录成cDNA。逆转录产物配伍测序条带[fmol® DNA Cycle Sequencing System (Promega)]进行6%聚丙烯酰胺变性胶电泳,放射自显影后分析结果。

1.6 EMSA实验

PCR扩增16S rRNA编码区和hcp1 (引物见表1)的启动子区序列并对产物纯化回收,用T4多聚核苷酸激酶(T4 PNK)对DNA片段5′-末端进行标记,以制备DNA探针[14]。利用Ni-NTA柱法纯化His-H-NS蛋白[14]。将不同浓度的His-H-NS蛋白与DNA探针在10 μL结合反应体系中,室温共同孵育20 min后,进行4%非变性聚丙烯酰胺凝胶中进行电泳,-20 ºC放射自显影后分析结果。

表1 本文所用引物 Table 1 Oligonucleotide primers used in this study
Target Primers (5′→3′, forward/reverse)
RT-PCR
hcp1 TCAGTAGGTAACACATGGCAAG/TGGAGAAGAACGGTCTTGAAC
16S rRNA GACACGGTCCAGACTCCTAC/GTGCTTCTTCTGTCGCTAAC
Primer extension
hcp1 GAGTTTCACCGTTGATAGAC
EMSA
hcp1 GCTATCGGGTGTAGACGCTG/GAGTTTCACCGTTGATAGAC
16S rDNA GACACGGTCCAGACTCCTAC/GTGCTTCTTCTGTCGCTAAC
2 结果和分析 2.1 H-NS负调控hcp1的表达

利用Western blot实验研究H-NS对hcp1的表达调控,结果如图1-A,可以看出:在Δhns中检测出的Hcp1条带明显粗于WT中的,表明H-NS能抑制Hcp1的表达,这也与Dor Salomon等的结果一致[11]。进一步利用实时定量RT-PCR的方法研究H-NS对hcp1的转录调控关系,其结果如图1-B所示:在Δhns中检测到的hcp1 mRNA相对表达丰度明显高于WT中,且二者具有显著性差异,这说明H-NS能抑制hcp1的转录。总之,H-NS负调控hcp1的表达。

图1 H-NS抑制hcp1的表达 Figure 1 Expression of hcp1 was repressed by H-NS. A: Western blot. The Hcp1 production was detected in WT or Δhns using the anti-Hcp1 polyclonal antibody. B: RT-PCR. The mRNA levels of hcp1 were compared between Δhns and WT. On the basis of the standard curves of 16S rRNA expression, the relative mRNA level was determined by calculating the threshold cycle (?Ct) of the gene using the classic ?Ct method. The positive numbers indicated the nucleotide position downstream of translation start.
2.2 H-NS抑制hcp1的启动子区活性

引物延伸实验结果(图2-A)显示hcp1有一个位于-62位的转录起始位点T(翻译起始位点为+1),说明该基因有一个以T (-62)为转录起始位点的启动子区;另外,我们在Δhns中检测到的引物延伸条带明显浓于WT中的,这说明H-NS能抑制T (-62)启动子区活性。T (-62)上游含有-12 (TTGA) 和-24 (TGGCACG)元件组成的核心启动子区(图2-B),说明T (-62)的转录受σ54的调节[15]。总之,T (-62)的转录是H-NS和σ54依赖性的。

图2 H-NS抑制hcp1启动子区活性 Figure 2 H-NS represses promoter activity of hcp1. A: Primer extension. An oligonucleotide primer was designed to be complementary to the RNA transcript of hcp1. The primer extension products were analyzed with 8 mol/L urea-6% acrylamide sequencing gel. The transcription start site of hcp1 was indicated by arrow with nucleotide and position. Lanes C, T, A, and G represent the Sanger sequencing reactions. The negative number indicated the nucleotide site upstream of the translation start (+1). B: Structure of hcp1 core promoter. Based on the primer extension result, organization core promoter of hcp1 was depicted, in which shown were translation and transcription starts, -24 and -12 core promoter elements for σ54 (RpoN) recognition.
2.3 H-NS能直接结合到hcp1的启动子区

H-NS没有保守的识别基序,但是对富含AT的DNA序列具有较强的亲和力。hcp1启动子区DNA序列的AT含量高达72%,这提示H-NS可能对hcp1启动子区具有结合作用。EMSA结果(图3)显示:当His-H-NS浓度达到25.6 pmol时,即可出现阻滞条带,且随着蛋白浓度的增高,阻滞条带也逐渐增强,这说明His-H-NS对hcp1启动子区DNA序列的结合是浓度梯度依赖性的;而在所有的蛋白浓度下,阴性对照16S rDNA均未出现阻滞条带,这说明了实验结果的可靠性。总之,H-NS能直接作用于hcp1的启动子区。

图3 H-NS能直接结合到hcp1启动子区 Figure 3 His-H-NS bound to the promoter-proximal DNA region of hcp1. The positive and minus numbers in the brackets indicated the nucleotide sites upstream and downstream of the translation start (+1), respectively. Shown below was the schematic representation of the EMSA design.
3 讨论

H-NS是一个小而丰富的拟核相关DNA结合蛋白,主要参与细菌拟核基因组装配和调控基因转录。作为转录调控因子,H-NS通常有选择地结合到基因启动子区富含AT的碱基序列上并形成高级的“桥链”结构,从而抑制基因转录[8]。H-NS是革兰氏阴性菌的整体负调控因子,如在大肠杆菌K-12菌株中,至少有4%的基因转录是受H-NS抑制的,包括许多应激适应性相关基因[16]。目前的研究表明:H-NS是致病性弧菌毒力因子表达的主要抑制因子。在霍乱弧菌(V. cholerae)中,H-NS对hapA (编码血凝素/蛋白酶)基因、tcp (编码菌毛粘附因子)和ctx (编码霍乱毒素)操纵子的转录均具有直接的抑制作用,它们均是霍乱弧菌最重要的毒力因子[17, 18]。在创伤弧菌(V. vulnificus)中,H-NS对编码RTX毒素的基因座位rtxA1操纵子的转录也具有直接的抑制作用[19];在副溶血弧菌(V. parahaemolyticus)中,H-NS对主要的毒力因子T3SS1、T3SS2、TDH和T6SS2相关基因的转录均具有直接的抑制作用[9, 10]。另外,Dor Salomon等利用Western blot实验证明H-NS对T6SS1相关基因的表达也具有抑制作用[11],但是具体的机制未被阐明。本文中,我们首先利用Western blot和实时定量RT-PCR实验(图1)证明H-NS负调控T6SS1结构蛋白基因hcp1 (VP1393)的转录;随后的引物延伸结果(图2)表明hcp1有一个σ54依赖的转录起始位点T (-62),该位点的转录受H-NS的抑制。H-NS对富含AT的DNA序列具有较强的亲和力,而hcp1启动子区DNA序列的AT含量高达72%,这提示H-NS可能对hcp1具有直接的调控作用,EMSA结果(图3)显示H-NS确实能直接作用于hcp1的启动子区。

T6SS1由副溶血弧菌大染色体编码的跨膜“针状”注射装置,主要具有细胞粘附活性和对他种细菌的杀菌活性[5]。T6SS1的表达受周围生长环境的调控,在模拟海洋环境条件(2% NaCl和23-30 °C)下表达水平最高[5]。密度感应(Quorum sensing,QS)系统对T6SS1也具有调控作用:当细菌处于低密度生长时,QS系统低密度下的核心调控子AphA对T6SS1相关基因的转录(我们未发表数据)具有间接的抑制作用;当细菌处于高密度生长时,QS系统高密度下的核心调控子OpaR也能间接抑制T6SS1相关基因的表达[20]。另外,位于T6SS1基因座位内的调控子VP1391和VP1407对T6SS1相关基因的转录均具有激活作用[11]。本文的研究结果表明H-NS对T6SS1结构蛋白基因hcp1 (VP1393)的转录具有直接的抑制作用。可见,副溶血弧菌的T6SS1的表达是一个被多种因素紧密调控的过程。

副溶血弧菌的H-NS对靶基因启动子区的结合序列长度都在100 bp以上,并通常覆盖σ因子结合位点和转录起始位点,或位于转录起始位点之后,从而起负调控作用[10]。因此,我们推测H-NS对hcp1启动子区的结合位点很可能覆盖-12和-24元件及转录起始位点T (-62)(图2-A),从而抑制其转录。除VP1393-1406操纵子外,副溶血弧菌T6SS1 (VP1386-1414)至少还包含5个操纵子[21],即VP1386-1387、VP1388-1390、VP1392-1391、VP1409-1407和VP1410-1414,H-NS对这些操纵子基因是否具有调控作用,以及具体的调控机制值得我们后续继续深入研究。

参考文献
[1] Broberg CA, Calder TJ, Orth K. Vibrio parahaemolyticus cell biology and pathogenicity determinants. Microbes and Infection, 2011, 13(12/13):992-1001.
[2] Ceccarelli D, Hasan NA, Huq A, Colwell RR. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Frontiers in Cellular and Infection Microbiology, 2013, 3:97.
[3] Kapitein N, Mogk A. Deadly syringes:type VI secretion system activities in pathogenicity and interbacterial competition. Current Opinion in Microbiology, 2013, 16(1):52-58.
[4] Silverman JM, Brunet YR, Cascales E, Mougous JD. Structure and regulation of the type VI secretion system. Annual Review of Microbiology, 2012, 66:453-472.
[5] Salomon D, Gonzalez H, Updegraff BL, Orth K. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2. PLoS One, 2013, 8(4):e61086.
[6] Yu Y, Yang H, Li J, Zhang PP, Wu BB, Zhu BL, Zhang Y, Fang WH. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers. Archives of Microbiology, 2012, 194(10):827-835.
[7] Dorman CJ. Horizontally acquired homologues of the nucleoidassociated protein H-NS:implications for gene regulation. Molecular Microbiology, 2010, 75(2):264-267.
[8] Navarre WW, McClelland M, Libby SJ, Fang FC. Silencing of xenogeneic DNA by H-NS-facilitation of lateral gene transfer in bacteria by a defense system that recognizes foreign DNA. Genes & Development, 2007, 21(12):1456-1471.
[9] Kodama T, Yamazaki C, Park KS, Akeda Y, Iida T, Honda T. Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS. FEMS Microbiology Letters, 2010, 311(1):10-17.
[10] Sun FJ, Zhang YQ, Qiu YF, Yang HY, Yang WH, Yin Z, Wang J, Yang RF, Xia PY, Zhou DS. H-NS is a repressor of major virulence gene loci in Vibrio parahaemolyticus. Frontiers in Microbiology, 2014, 5:675.
[11] Salomon D, Klimko JA, Orth K. H-NS regulates the Vibrio parahaemolyticus type VI secretion system 1. Microbiology, 2014, 160(Pt 9):1867-1873.
[12] Yan XJ, Zhang YQ, Wang L, Liu MY, Yang SY, Yang RF, Zhou DS, Qiu JF. Preparation and application of VPA1405 polyclonal antibody in Vibrio parahaemolyticus. Military Medical Sciences, 2013, 37(2):118-121.(in Chinese) 闫小娟, 张义全, 王丽, 刘梦颖, 杨世亚, 杨瑞馥, 周冬生, 邱景富. 副溶血弧菌VPA1405多克隆抗体制备及应用. 军事医学, 2013, 37(2):118-121.
[13] Gao H, Zhang YQ, Yang L, Liu X, Guo ZB, Tan YF, Han YP, Huang XX, Zhou DS, Yang RF. Regulatory effects of cAMP receptor protein(CRP) on porin genes and its own gene in Yersinia pestis. BMC Microbiology, 2011, 11:40.
[14] Zhang YQ, Gao H, Wang L, Luo Z, Tan YF, Guo ZB, Yang RF, Zhou DS. Purification of recombinant H-NS protein of Yersinia pestis and characterization of its DNA-binding activity. Acta Microbiologica Sinica, 2011, 51(5):615-621.(in Chinese) 张义全, 高鹤, 王丽, 罗张, 谭亚芳, 郭兆彪, 杨瑞馥, 周冬生. 鼠疫菌H-NS蛋白的表达与纯化及其DNA结合活性分析. 微生物学报, 2011, 51(5):615-621.
[15] Barrios H, Valderrama B, Morett E. Compilation and analysis of σ54-dependent promoter sequences. Nucleic Acids Research, 1999, 27(22):4305-4313.
[16] Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P. Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein H-NS. Molecular Microbiology, 2001, 40(1):20-36.
[17] Stonehouse EA, Hulbert RR, Nye MB, Skorupski K, Taylor RK. H-NS binding and repression of the ctx promoter in Vibrio cholerae. Journal of Bacteriology, 2011, 193(4):979-988.
[18] Stonehouse E, Kovacikova G, Taylor RK, Skorupski K. Integration host factor positively regulates virulence gene expression in Vibrio cholerae. Journal of Bacteriology, 2008, 190(13):4736-4748.
[19] Liu MQ, Naka H, Crosa JH. HlyU acts as an H-NS antirepressor in the regulation of the RTX toxin gene essential for the virulence of the human pathogen Vibrio vulnificus CMCP6. Molecular Microbiology, 2009, 72(2):491-505.
[20] Ma LZ, Zhang YQ, Yan XJ, Guo LP, Wang L, Qiu JF, Yang RF, Zhou DS. Expression of the type VI secretion system 1 component Hcp1 is indirectly repressed by OpaR in Vibrio parahaemolyticus. The Scientific World Journal, 2012, 2012:982140.
[21] Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T, Tagomori K, Iijima Y, Najima M, Nakano M, Yamashita A, Kubota Y, Kimura S, Yasunaga T, Honda T, Shinagawa H,Hattori M, Iida T. Genome sequence of Vibrio parahaemolyticus:a pathogenic mechanism distinct from that of V cholerae. The Lancet, 2003, 361(9359):743-749.