Modeling for Prediction of Arabinoxylans Solubilization and Endo-xylanase Random Attacking During Mashing

LU Jian¹ and LI Yin²

1. The Key Laboratory of Industrial Biotechnology, Ministry of Education, Southern Yangtze University, Wuxi 214036, China
2. School of Biotechnology, Southern Yangtze University, Wuxi 214036, China

Abstract A model describing the solubilization of arabinoxylans and degradation by endo-xylanase random attacking during mashing was developed. The model was expected to predict the arabinoxylans concentration in wort at the settings of different initial value and mashing parameters for diminishing the negative effects of arabinoxylans on brewing. Results showed that the modeling errors range for the final concentration of arabinoxylans in wort was −9.5% to +13.6%. The model prediction accuracy for industrial scale mashing process was lower than that in laboratory scale. The errors were given 16.8% and 17.9% respectively. The simulation results showed that arabinoxylans concentration was increased with the increase of mashing-in temperature but it was decreased with prolonging the mashing-in time. The effect of initial arabinoxylans in malt on arabinoxylans concentration in wort was more remarkable than that of endo-xylanase activity in grist.

Key words model, arabinoxylans, endo-xylanase, mashing
进而通过对阿拉伯木聚糖溶解和降解机制的分析，优化糖化参数，从而有效地控制了阿拉伯木聚糖对酿造的负面作用。然而，由于不同品种和品质的大麦中阿拉伯木聚糖的含量大相径庭，不同企业糖化曲线的差异导致内切木聚糖酶失活程度不同，过去对参数优化的研究就有一定的局限性。因此，我们希望建立数学模型系统以研究糖化过程中阿拉伯木聚糖的溶解及降解。

本实验建立了预测糖化过程中阿拉伯木聚糖的溶解和降解及麦芽内源内切木聚糖酶随机进攻的模型，在给定不同的糖化曲线和初始麦芽条件的情况下能预测出最终糖化麦汁中阿拉伯木聚糖的浓度。在实验室条件下，通过5种等温糖化和6种升温糖化建立了模型，采用4种升温曲线对模型进行了验证，并在两家啤酒公司进行了工业验证，最终讨论了改变麦芽初始条件和升温曲线对结果的影响。

材料和方法

1.1 麦芽

实验室糖化采用2%种商品麦芽：
- 哈灵顿
- 肯德尔
- 梅林
- 美国
- 澳大利亚
- 中国

1.2 糖化

模型的建立和评价选用哈灵顿麦芽并采用7种不同的糖化曲线：
- 50°C/30min
- 45°C/30min
- 55°C/30min
- 45°C/40min
- 50°C/40min
- 45°C/45min
- 50°C/45min

7种等温糖化和6种升温糖化（升温曲线A和B）用于模型的参数估计，4种升温糖化（升温曲线C和D）用于模型的验证。

1.3 分析方法

糖化过程中间隔5～20min取样，迅速冷却到4°C以防止酶的进一步作用和糖的浸出。

内切木聚糖酶的测定采用DNS方法[1]。

阿拉伯木聚糖的测定采用气相色谱法，按L.等报道的方法测定糖化醪中阿拉伯木聚糖含量[2]。

1.4 模型描述

图1为谷物中阿拉伯木聚糖的溶解和受内切木聚糖酶作用降解示意图。大麦麦芽中大多数的阿拉伯木聚糖是不可溶的，但在温度升高时，部分变为热水可溶性的阿拉伯木聚糖。糖化过程中，阿拉伯木聚糖和内切木聚糖酶从谷物中溶解到糖化醪中。内切木聚糖酶降解阿拉伯木聚糖为β-1,4-β-1,4-木聚糖，但随糖化温度的升高，内切木聚糖酶又逐渐失活。

图1

Fig. 1 The structure of the model describing dissolution and degradation of arabinoxylans

Dashed lines stand for an influence and solid lines for mass flow.
1.4.1 糖化醪中的酶活达到平衡。因此谷物中初始酶活

木聚糖酶活达到最大值

1.4.2

在糖化刚开始，设所有阿拉伯木聚糖都存在于谷物中，糖化醪中没有阿拉伯木聚糖。因此，初始条件满足以下方程:

\[X_0 = \frac{X_{d0}}{V_s} + \frac{V_s}{V_s} \]

\[\frac{dX_s}{dt} = -H_s \frac{M}{V_s} X_s - X_s \]

\[\frac{dC_s}{dt} = H_s \frac{M}{V_s} C_s - S_c T \]

\[\frac{dC_s}{dt} = H_s \frac{M}{V_s} C_s - S_c T \]

\[B_0 T \]

\[B_{a0} T \]

\[B_{a0} T = B_{a0} \]

\[C_0 = C_{total} \]

\[C_0 = 0 \]

\[Arhenius \]

\[K_j T = K_{d0} \times e^{-E_{d0}/RT} \]

\[\lambda_j = \frac{V_s}{V_s} \]

\[\lambda_0 = 0 \]

1.5

2

2.1

2.1.1

Harrington

Table 2

<table>
<thead>
<tr>
<th>Equation</th>
<th>X_d</th>
<th>H_s</th>
<th>(g \cdot m_l \cdot m_l^{-1})</th>
<th>K_d</th>
<th>(g \cdot m_l^{-1})</th>
<th>E_total</th>
<th>(g/m_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3</td>
<td>192</td>
<td>2.01</td>
<td>2.98 (10^5)</td>
<td>277</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 - 12</td>
<td>6.84</td>
<td>1.21</td>
<td>9.32 (10^{-7})</td>
<td>3.86</td>
<td>10^{-2}</td>
<td>65.2</td>
<td></td>
</tr>
</tbody>
</table>
2.1.2 Schooner, Kendall, and KA4B

Table 3 The relative model prediction error between the measured and calculated values

<table>
<thead>
<tr>
<th>Barley variety</th>
<th>Mashing programme</th>
<th>Arabinofuranosans concentration</th>
<th>Error/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory scale</td>
<td>Calculated value g/L</td>
<td>Measured value g/L</td>
<td></td>
</tr>
<tr>
<td>Harrington Profile 1</td>
<td>1.321</td>
<td>1.365</td>
<td>-3.2</td>
</tr>
<tr>
<td>Harrington Profile 2</td>
<td>1.495</td>
<td>1.402</td>
<td>+6.6</td>
</tr>
<tr>
<td>Harrington Profile 3</td>
<td>1.536</td>
<td>1.470</td>
<td>+4.9</td>
</tr>
<tr>
<td>Harrington Profile 4</td>
<td>1.338</td>
<td>1.394</td>
<td>-4.0</td>
</tr>
<tr>
<td>Harrington Profile 5</td>
<td>1.411</td>
<td>1.352</td>
<td>+4.4</td>
</tr>
<tr>
<td>Harrington Profile 6</td>
<td>1.480</td>
<td>1.321</td>
<td>+11.9</td>
</tr>
<tr>
<td>KA4B Profile 1</td>
<td>1.280</td>
<td>1.362</td>
<td>+6.0</td>
</tr>
<tr>
<td>KA4B Profile 2</td>
<td>1.377</td>
<td>1.212</td>
<td>+13.6</td>
</tr>
<tr>
<td>Kendall Profile 1</td>
<td>0.952</td>
<td>1.052</td>
<td>+9.5</td>
</tr>
<tr>
<td>Kendall Profile 3</td>
<td>1.060</td>
<td>1.151</td>
<td>+7.9</td>
</tr>
<tr>
<td>Schooner Profile 1</td>
<td>1.152</td>
<td>1.221</td>
<td>+5.7</td>
</tr>
<tr>
<td>Schooner Profile 5</td>
<td>1.259</td>
<td>1.192</td>
<td>+5.6</td>
</tr>
<tr>
<td>Industrial scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harrington Profile A</td>
<td>1.011</td>
<td>0.841</td>
<td>+16.8</td>
</tr>
<tr>
<td>Schooner Profile B</td>
<td>1.039</td>
<td>0.852</td>
<td>+17.9</td>
</tr>
</tbody>
</table>

2.3

2.3.1 Fig. 2 Predicted solid lines and measured endo-xylanase activity and arabinofuranosans concentration in the water phase for Harrington malt profile 2

Table 4 Initial condition for Schooner, Kendall, and KA4B malt and identified model parameter values

<table>
<thead>
<tr>
<th>Barley variety</th>
<th>X0 (°Brix)</th>
<th>C0 (g/L)</th>
<th>S0 (g/L)</th>
<th>E0 (°Brix)</th>
<th>K0</th>
<th>S0 (g/L)</th>
<th>E0 (°Brix)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schooner</td>
<td>104500</td>
<td>60.1</td>
<td>2.72 10^-2</td>
<td>55.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kendall</td>
<td>82800</td>
<td>52.3</td>
<td>2.07 10^-2</td>
<td>48.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KA4B</td>
<td>65700</td>
<td>70.1</td>
<td>3.05 10^-2</td>
<td>67.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3 Predicted solid lines and measured endo-xylanase activity and arabinofuranosans concentration in the water phase in industrial experiment B

Fig. 4 Predicted final arabinofuranosans concentration in wort when step-wise changing mashing-in temperature profile 1

© 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn
图5 预测最终木聚糖浓度在麦汁中的影响

2.3.2 麦芽初始值的改变：在糖化曲线上，将麦芽中内切木聚糖酶活提高或降低；糖化醪中最高酶活变化较大，但对麦汁中阿拉伯木聚糖浓度影响不大（图A），说明酶活高低对糖浓度没有显著的影响。

当麦芽中可溶性阿拉伯木聚糖增加或减少时，将显著影响麦汁中阿拉伯木聚糖的浓度（图B）。

图A预测模型中改变麦芽中内切木聚糖酶活（图）对麦汁中阿拉伯木聚糖浓度的影响。

糖化曲线的改变：将糖化曲线的初始温度从！降低至G！，初始糖化保温时间分别为C和A，而保持总糖化时间不变，得到两条糖化曲线（图H）。改变糖化曲线的结果表明，糖化结束时，麦汁中的阿拉伯木聚糖分别降低了$(\frac{\text{G}_\text{H}}{\text{K}_\text{H}})$和$(\frac{\text{A}_\text{H}}{\text{B}_\text{H}})$。

图H预测模型中改变糖化曲线对内切木聚糖酶活和阿拉伯木聚糖浓度的影响。

讨论

本实验建立了糖化过程中内切木聚糖酶的溶解和失活及阿拉伯木聚糖的溶解和降解的模型。实验室规模和工业规模的验证表明，此模型能较为准确地预测不同糖化过程下麦汁中阿拉伯木聚糖的浓度。工业生产下的预测值与真实值的误差要大于实验室条件下的误差，产生这种情况可能有以下几点原因：将实验室条件下的估计参数应用于工业规模使误差放大；工业规模的转化率与实验室规模有较大的差异；在工业条件下重新进行参数估计将会降低实验误差。

仿真模型结果显示，改变初始糖化温度和时间能明显影响麦汁中阿拉伯木聚糖浓度。在糖化曲线！下，将初始温度从！降至G！，麦汁中阿拉伯木聚糖浓度能降低$(\frac{\text{G}_\text{H}}{\text{K}_\text{H}})$；而当初始糖化时间从C增加到A，麦汁中阿拉伯木聚糖浓度降低了$(\frac{\text{A}_\text{H}}{\text{B}_\text{H}})$。

图A和图B的结果表明，谷物中可溶性阿拉伯木聚糖的含量比谷物中内切木聚糖酶更能影响最终麦汁中的阿拉伯木聚糖的浓度，即麦汁中的阿拉伯木聚糖浓度主要决定于谷物中可溶性阿拉伯木聚糖的含量。

通过此模型的建立，能为工业生产较为准确地预测麦汁中阿拉伯木聚糖的含量，以防止过高的阿拉伯木聚糖含量影响啤酒酿造及成品啤酒质量。通过在计算机上运行L.+/.0程序，运用建立的模型，可以快捷简便地对糖化过程中阿拉伯木聚糖的溶解和降解进行研究。
近来，洱海等一些湖泊中都发生了水华现象，其中有一种叫微囊藻的，其产生的囊藻毒素，其毒力仅次于二恶英。实验证明，这会对生物体内的某些器官，如脾、肺等器官会有一定的损害，癌症爆发的比例比没有受蓝藻污染地区的比例要大。赤潮藻如塔可亚历山大藻也会对这些器官造成损害，主要通过其产生这种抗生素对这类蓝藻起杀灭作用。

硝酸盐，经加氯消毒后会形成多种致癌物质，影响人体健康。在我国有些湖泊如太湖(江苏)、滇池(云南)、东湖(湖北)等以及一些海域中赤潮藻如塔可亚历山大藻等也会对环境造成污染。因此，对这些蓝藻要进行治理，否则会导致某些藻类如蓝藻等疯长的现象，通常把这称为水华，引起的水域富营养化现象。对这类藻类的抑制要从其产生的毒素开始，进行研究和治理水华的微生物技术，对这类藻类抑制作用的微生物，如金黄地衣、地衣芽孢杆菌等值得进一步探究。在治理水华中，治理赤潮藻的微生物技术也是一大难题，因为存在着敏感群和抗性群，后者则成为其专一性灭藻的障碍，需要进一步探究。在治理水华的过程中，要多方面研究，才能科学地治理水华。