固定化产氨短杆菌、黄色短杆菌反应动力学的研究
胡永红 沈树宝 欧阳平凯
(南京工业大学制药与生命科学学院,南京)

关键词 固定化细胞,产氨短杆菌,黄色短杆菌,动力学研究

中图分类号 I654 文献标识码 J 文章编号 1000-3062(2002)02-0235-04

多年来虽然有不少学者对固定化细胞生产苹果酸的方法进行过探讨,但对过程动力学的研究报道并不多见,在富马酸铵转化体系中的表观动力学及本征动力学模型还未见报道,本文对富马酸铵转化体系中固定化产氨短杆菌、黄色短杆菌细胞的动力学进行了探讨,测定了两种固定化细胞的表观动力学常数,并进一步求解了相应的本征动力学常数,这一结果便于从理论上指导富马酸铵转化过程的工业化生产。

1 材料和方法

1.1 试剂
富马酸,工业级,苏州合成化工厂,碳酸钙,工业级,泗联化工厂。

1.2 菌株
本文所用的菌株是由我院筛选并保存的产氨短杆菌和黄色短杆菌。

1.3 培养基组成

斜面培养基:上述两株菌均于普通肉汤培养基中培养,其成分为:蛋白胨,牛肉膏,氯化钠。

产氨短杆菌发酵培养基成分:柠檬酸氢二铵,2N·,2NH··1N·$,用调节至左右,灭菌后备用。

黄色短杆菌发酵培养基成分:丙二酸,2N·,2NH··1N·$,用调节至左右,灭菌后备用。

1.4 培养条件
产氨短杆菌于%下培养,摇瓶接种量为,摇床转速。黄色短杆菌培养温度为%,其余条件同产氨短杆菌。

1.5 仪器
分光光度计(上海第三分析仪器厂),电子分析天平(上海沪西仪器厂),YR5!型超级恒温器(重庆试验设备厂),NK0!恒流泵(上海沪西仪器厂),NZ0"!型回转振荡器(太仓仪器设备厂)。

1.6 分析方法
富马酸含量的测定详见文献,苹果酸含量的测定详见文献。

1.7 固定化方法及其活化
固定化方法按文献所述方法进行,为了增加固定化细胞透性及阻遏琥珀酸的生成,需将其浸于内含胆汁酸的富马酸铵(或钠)溶液中,活化处理。

2 动力学测定方法
用间歇测定法,加入一定量的固定化产氨短杆菌、黄色短杆菌颗粒,分别考察了底物富马酸铵和产物苹果酸铵对反应初速率的影响,测定温度为,实验中检测一定的初始条件下组成随时间的变化,进而求得反应的初始速率。

结果与讨论

2.1 外扩散对固定化细胞转化反应的影响
众所周知,当反应达到稳态时,传质速率与反应速率相等,而在实际操作上,则通过改变底物富马酸铵溶液的流动状态就能够消除外扩散的影响。实验中将颗粒直径为的固定化产氨短杆菌、黄色短杆菌细胞分别装入直径为,柱高为的带有夹套的玻璃柱反应器中,通过调节蠕动泵转速,改变反应液的流速,考察外扩散对反应速率的影响。初始富马酸铵浓度取进行实验,结果如图所示。由图可见,随着反应液流速的增加,反应速率逐渐增加,当流速大于#时,流速对固定化产氨短杆菌和固定化黄色短杆菌细胞反应速率基本上没有影响,这是由于高流速流动增加了流体的湍动状态。当流速增加到一定程度时,可以认为外扩散阻力已经消除,在以下的实验中采用的
流速对固定化细胞反应速率的影响

在固定化细胞的内部不存在流体流动,其传质完全依赖于扩散作用。在消除外扩散影响的情况下,考虑分布在卡拉胶球形颗粒载体上的产氨短杆菌、黄色短杆菌的内细胞,假设符合下列条件:

1. 基质浓度只存在径向梯度。
2. 球形颗粒内部,物质扩散服从Fick定律。
3. 整个反应是恒温的,扩散与反应处于稳态。
4. 一般固定化细胞反应动力学能用下述反应动力学模型来描述:

\[r_p = r_{max} C_0 K_a + C_s \]

式(1)和式(2)表明表观最大速率和表观米氏常数是表观无因次数的函数。因为\(r_{max} \)是反应内扩散影响的无因次数,所以当\(r_{max} \to 0 \)时,可以认为不存在内扩散阻力,此时的动力学常数可以认为是本征动力学常数,即:

\[K_m = \lim_{r_{max} \to 0} K_a = \lim_{r_{max} \to 0} K_s \]

\[r_{max} = \lim_{r_{max} \to 0} r_{max} = \lim_{r_{max} \to 0} K_s \]

作者以前的研究表明,固定化产氨短杆菌、黄色短杆菌细胞在富马酸铵转化体系中不存在底物抑制,所以这一项忽略不计,虽然高浓度产物对反应有一定的抑制作用,但由于\(K_m \)很大,所以\(r_{max} \)亦可近似为0,则方程(1)变为:

\[r_p = r_{max} C_0 K_a + C_s \]

即该反应符合米氏方程。对一半径为\(R \)的球形固定化颗粒,在距球体中心为\(r \)处取一厚度为\(\delta \)的微元壳体,稳态时,对反应底物富马酸铵进行物料衡算,并代入边界条件,有:

\[\frac{d^2 y}{dr^2} + 2 \frac{dy}{dr} + \frac{\phi^2}{a + y} = \frac{R^2 r_{max}}{D_s K_m} \]

\[\phi^2 = \frac{R^2 r_{max}}{D_s K_m} \]

\[x = r/R, \quad y = C_0/C_{s0}, \quad a = K_m/C_s \]

\[K_m = \frac{4}{3} \pi R^2 \delta \]

\[r_{max} = \frac{4}{3} \pi R^2 \delta \]

采用直径约为5mm的球形固定化产氨短杆菌、黄色短杆菌细胞进行实验,在富马酸铵浓度为0.005 mol/L~1.8 mol/L范围内测定固定化细胞的反应初始速率,结果如图所示。由图可知,在低底物浓度下,随着底物浓度的增加反应速率急剧增加,基本成正比,此时反应属于一级反应,随着底物浓度的继续增加,反应由一级过渡到二级反应,反应速率曲线也开始弯曲,当底物浓度升高至一定数值时,就不再升高,此时反应达最大速率。在低浓度范围内,由对\(r_p \)进行线性拟合,可得产氨短杆菌反应体系米氏常数为\(3 \times 10^{-2} \) mol/L,最大反应速率\(3 \times 10^{-2} \) mol/L,黄色短杆菌反应体系米氏常数为\(6.25 \times 10^{-2} \) mol/L,最大反应速率\(6.25 \times 10^{-2} \) mol/L,由图还可看出,当底物富马酸铵浓度增大时,反应速率并未显著下降,说明在该反应体系中不存在明显的底物抑制现象。
Table 1 The apparent kinetic parameters of immobilized cells at different particle diameters of gel

<table>
<thead>
<tr>
<th>Particle diameters d/mm</th>
<th>B. ammniogenes MA-2</th>
<th>B. flavum MA-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ^* mmol/L</td>
<td>K^*_m mmol/L</td>
</tr>
<tr>
<td>2.2</td>
<td>16.28</td>
<td>59.7</td>
</tr>
<tr>
<td>3.0</td>
<td>20.82</td>
<td>62.5</td>
</tr>
<tr>
<td>4.2</td>
<td>26.70</td>
<td>70.8</td>
</tr>
<tr>
<td>5.5</td>
<td>30.88</td>
<td>78.9</td>
</tr>
</tbody>
</table>

$\Phi^* = R \sqrt{r^*_m}$

$K^*_m = \frac{r^*_m}{\phi^*}$

$\phi^* = R \sqrt{r^*_m}$

$K^*_m = \frac{r^*_m}{\phi^*}$

$\phi^* = R \sqrt{r^*_m}$
Study on the Kinetics of Immobilized Cells of *Brevibacterium ammoniagenes MA-2* and *Brevibacterium flavum MA-3*

HU Yong-Hong*, SHEN Shu-Bao, OUYANG Ping-Kai

College of Life Science and Pharmacy, Nanjing University of Technology, Nanjing 210009, China

Abstract The kinetics of immobilized cells of *Brevibacterium ammoniagenes MA-2* and *Brevibacterium flavum MA-3* cells were studied. By means of both a theoretical analysis of diffusion in the gel particles and an experimental determination of apparent kinetic parameters, the intrinsic kinetic parameters of immobilized cells of *B. ammoniagenes MA-2* and *B. flavum MA-3* cells were obtained.

Key words immobilized cells, B. ammoniagenes MA-2, B. flavum MA-3, kinetics

4 Keao Y, Tetsuya T, Kiyokazu Y. Continuous Production of L-malic acid by immobilized *Brevibacterium ammoniagenes* cells. *European Journal of Applied Microbiology* 1980, 169 – 175

6 HU Y, OUYANG P. New method for separation of fumaric acid from L-malic acid production and conversion to L-aspartic acid by immobilized cells. *Journal of Nanjing University of Chemical Technology* 1985, 2(1): 58 – 62

