小型综述

微生物学报

合成生物聚合物的重要微生物资源

鞘氨醇单胞菌

黄海东，刘云，刘如林（南开大学生命科学学院，分子微生物学与技术教育部重点实验室，天津）

摘要：鞘氨醇单胞菌属的许多菌株能够合成结冷胶、沃仑胶、迪特胶等多种结构相似，物理性能多样的生物聚合物，统称为鞘氨醇胶。目前，结冷胶已经大规模的生产和应用，由于鞘氨醇单胞菌属的提出仅有十几年的历史，其他种类鞘氨醇胶的研究和开发才刚刚起步。本文综述了鞘氨醇单胞菌属分类研究的最新进展，以及鞘氨醇胶的结构、特性、生物合成途径、分子遗传学和基因工程的研究现状，并对今后的研究重点和方向进行了展望。

关键词：鞘氨醇单胞菌；鞘氨醇胶；合成途径；基因工程

中图分类号：

文献标识码：

文章编号：

鞘氨醇单胞菌属（）是一种能够合成生物聚合物的重要微生物菌种资源，近年来研究者发现，除结冷胶（）外，鞘氨醇单胞菌属的某些菌株还能够合成多种其他聚合物，例如沃仑胶（）、鼠李胶（）、迪特胶（）等。这些生物高分子聚合物主要由多糖组成，具有相似的主链结构，被统称为鞘氨醇胶（）。其中结冷胶是继黄原胶之后又一得到广泛应用的微生物代谢胶，而沃仑胶、鼠李胶和迪特胶也已经逐步得到商业化生产和应用。本文综述了合成生物聚合物的重要微生物资源———鞘氨醇单胞菌的研究进展，包括菌属分类、鞘氨醇胶的结构、合成基因、发酵生产和应用。

鞘氨醇单胞菌的分类研究

年，日本学者等人根据序列、呼吸醌种类和细胞极性脂模式等特征，首次提出一类新的细菌属———鞘氨醇单胞菌属（），并将其原来的伊乐藻假单胞菌（）重新命名为少动鞘氨醇单胞菌（），作为鞘氨醇单胞菌属的模式菌株。该菌属的共同分类特征为：革兰氏阴性、杆状、好氧、无芽孢、多呈黄色，过氧化氢酶阳性，细胞脂肪酸模式中有羟基脂肪酸，而缺乏羟基脂肪酸；细胞膜组分中不含脂多糖，而含有一种特殊的脂质成分———鞘糖脂。由于鞘氨醇单胞菌属菌株代谢的多样性，特别是能够降解复杂的芳香族污染物，耐受极端贫营养条件，并产生有价值的高分子聚合物，故针对该菌属的研究一直非常活跃。之后的十几年中，假单胞菌属（）、产碱菌属（）和拜叶林克氏菌属（）的许多菌株被重新鉴定和分入鞘氨醇单胞菌属，该菌属中的一些新菌株也不断被发现。随着鞘氨醇单胞菌属所包含菌株数量的不断扩大，这些菌株在生理、生态和系统进化上的多

1

1990年 Yabuuchi 16S rRNA
多样性也越来越丰富，是否应该对该菌属重新进行划分引发了一些争议。

根据“$#$ %&'()序列比对和系统进化分析(图1)，鞘氨醇单胞菌属可以被清晰地分为多个簇，且同一簇的菌株序列同源性均大于53，而不同簇间的序列同源性较低，在78%之间。而且每个簇的“#$ %&‘(序列都有一些可以与其他簇相区别的特异性碱基序列，例如：第一簇的第35个碱基为#，第二簇的第46个碱基为#，第三簇的第91个碱基为$，第四簇的第236个碱基为#。

另一个重要区别是细胞多胺模式，第一簇的多胺类型为类精脒，第二簇含有大量的亚精胺和微量的胍丁胺，第三和第四簇含有大量的亚精胺以及微量的腐胺和胍丁胺。

根据系统进化分析、特异性碱基位点和多胺模式的研究，2001年Takeuchi等人对鞘氨醇单胞菌属进行了重新分类，进一步细分为多个属：

- Sphingomonas sensu stricto
- Sphingobium
- Novosphingobium
- Sphingopyxis

这一分类观点已被广泛接受。目前，这三个属中正式命名的种分别有14、14和14个。
ATCC 31853 Alcaligenes sp. ATCC 31853 S. yanoikuyae ATCC 21423 Beijerinckia sp. ATCC 21423 3 S-88 S-198 S-7 16S rDNA

Fig. 2. Structure of sphingans and phylogenetic analysis of sphingans-producing bacteria.

ATCC 31853 Alcaligenes sp. ATCC 31853 S. yanoikuyae ATCC 21423 Beijerinckia sp. ATCC 21423 3 S-88 S-198 S-7 16S rDNA

Fig. 2. Structure of sphingans and phylogenetic analysis of sphingans-producing bacteria.
Sphingomonas sp. ATCC 31554 S-88
sps gel Sp. S. paucimobilis ATCC 31461 gel
spsQ gelQ dpsQ rmld
DpsB
DpsK
DpsL
DpsQ
urf31
sps
spsR
spg
spsR
spsQ
gelS
gelG
gelR
Sphingomonas sp. ATCC 31554
Sphingomonas sp. ATCC 53159
S-198
S. elodea ATCC 31461
S. elodea ATCC 31461
phm
pgmG
ugpG
Sphingomonas sp. ATCC 31554
Sphingomonas sp. ATCC 31554
Sphingomonas sp. ATCC 53159
S-198
S. elodea ATCC 31461
S. elodea ATCC 31461
pgmG
ugpG
20%
Sphingomonas,提高糖基氨醇单胞菌属菌种资源的筛选和开发,获得更多新著增加,但迪特胶的合成量仅有小量提高

实验室鉴定了一株鞘氨醇单胞菌属的新种。通过基因工程的方法改进鞘氨醇胶的合成途径,从分子水平阐明这类聚合物合成的关键问题和展望

在过去的十几年中,鞘氨醇胶的研究和开发取得了一系列成果。果鞘氨醇胶的产量提高50%~75%。研究也被尝试。

而生产出具有不同性质的产物;(

改进鞘氨醇胶的合成基因中的

将鞘氨醇胶的产率较低,通常仅为前者的6-7倍。盖Coleman(2007).

通过基因工程的方法改

构建了1个合成基因中的

Sphingomonas pituitosa sp. nov. 尝试

Sphingomonas parapausimobilis sp. nov. 尝试

Sphingomonas yanoikuyae sp. nov. 尝试

Sphingomonas capsulata comb. nov. 尝试

两个新种的建立。将鞘氨醇胶

参考文献

Yabuuchi E, Yano H, Oyaizu H et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov.

Sphingomonas parapausimobilis sp. nov.

Sphingomonas yanoikuyae sp. nov.

Sphingomonas capsulata comb. nov.

Sphingomonas sp. An important microbial resource for biopolymer synthesis

Haidong Huang, Yun Liu, Rulin Liu

1. Key Laboratory of Molecular Microbiology Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China

2. Department of Agronomy, Tianjin Agricultural University, Tianjin 300384, China

Abstract The genus *Sphingomonas* was established in 1990. *Sphingomonas* spp. synthesize sphingans, structurally related biopolymers such as gellan, welan and diutan. At present, only gellan is applied widely in foods and pharmaceuticals. The economic value of other sphingans has not been well explored, and related research of sphingans still remains limited. In the present review, we address the latest taxonomy developments of *Sphingomonas*, details about structural characteristics and biosynthetic pathway of sphingans, current knowledge on the molecular genetics and genetic engineering of sphingans. In addition, we indicate future research needs.

Keywords *Sphingomonas* sp., sphingans, biosynthetic pathway, genetic engineering

Supported by the National Natural Science Foundation of China 50674058.

* Corresponding authors. Tel: 86-21-23505967. E-mail: mear@nankai.edu.cn

Received 3 December 2008; Revised 6 February 2009

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>Volume</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>