研究简报

微生物学报

Acta Microbiologica Sinica

52(3):381-388; 4 March 2012
ISSN 0001-6209; CN 11-1995/Q
http://journals.im.ac.cn/actamicrocn

基金项目：新疆特殊环境微生物重点实验室开放课题（XJYS0203-2009-06）

通信作者。
Tel: +86-991-4521590; E-mail: loukai02@mail.tsinghua.edu.cn

作者简介：牟文婷（1986-），女，新疆人，硕士，主要从事特殊生境环境微生物的研究。
E-mail: musiying_1211@163.com

收稿日期: 2011-11-30; 修回日期: 2012-02-07

新疆特殊生境岩石内生细菌末端限制性片段长度多态性技术分析

牟文婷1, 张涛2, 孙建2, 曾军2, 徐赢华2, 吴尊凤2, 胡雯2, 娄恺2*

1新疆大学生命科学与技术学院，乌鲁木齐830046
2新疆农业科学院微生物应用研究所，乌鲁木齐830091

摘要：【目的】了解新疆特殊生境不同类型岩石内生细菌的组成及多样性。【方法】采用末端限制性片段长度多态性技术（Terminal Restriction Fragment Length Polymorphism, T-RFLP），分析新疆乌苏花岗岩（1号样）、一冰川和木垒变质岩（2, 3号样）、裕民和托克逊岩石漆（4, 5号样）内生细菌群落。【结果】样品间多样性指数变化不大；聚类分析表明岩石类型相同，其相似性较高，2号样和3号样聚为一支并与1号样再聚为一支，4号样与5号样聚为一支；各样品共有种群为厚壁菌门（Firmicutes）、放线菌门（Actinobacteria）、变形菌门（Proteobacteria）、浮霉菌门（Planctomycetes）；4号样、5号样优势类群为放线菌门（29.3%），其它4个样品均为变形菌门，只是所占比例略有不同。【结论】生境不同的同类型岩石的内生细菌群落组成存在差异，各类岩石中可能存在大量未知细菌新种。

关键词：岩石内生细菌，T-RFLP，多样性
T-RFLP, PCR, DNA, T-RF, Hha I, Msp I

1

1.1

1.1.1

PCR, DNA, T-RF, Hha I, Msp I

72°C, 2 min; 95°C, 1 min; 30 min, 10°C

1.1.6

T-RFLP, Hha I, Msp I

37°C, 9 h, 1 min; 80°C, 20 min

1.1.7

T-RF, Shannon index, Evenness index, Simpson index

Cs = 2N_{AB}/N_{A} + N_{B} - N_{AB}

1.1.8

MiCA PAT′ (http://mica.ibest.uidaho.edu/) TRFs

Hha I, Msp I

4%

2

2.1

T-RFLP, Hha I, Msp I

5

Shannon-weiner (H′), Simpson (D), Evenness (E)

0.5 μL[x], 1 μLaq polymerase, 0.1 μL[y], 1 μL[x]

25 μL; PCR, 95°C, 5 min; 95°C, 45 s

55°C, 45 s; 72°C, 1 min, 30 cycles; 72°C, 10 min

4

Hha I, Msp I

Hha I, Msp I

37°C, 9 h, 1 min

80°C, 20 min

9

Hha I, Msp I

37°C, 9 h, 1 min

80°C, 20 min

9

Hha I, Msp I
牟文婷等：新疆特殊生境岩石内生细菌末端限制性片段长度多态性技术分析

Fig. 1 T-RFLP profile of bacterial Community. Numbers 1-5 mean sample 1-sample 5. H and M are different restriction endonuclease [HhaI and MspI].
Table 1 Diversity analysis of bacterial community

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hha I</th>
<th>Msp I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T-RFs</td>
<td>Shannon-Weiner index (H')</td>
</tr>
<tr>
<td>sample1</td>
<td>25</td>
<td>2.33</td>
</tr>
<tr>
<td>sample2</td>
<td>30</td>
<td>2.32</td>
</tr>
<tr>
<td>sample3</td>
<td>31</td>
<td>2.51</td>
</tr>
<tr>
<td>sample4</td>
<td>35</td>
<td>2.61</td>
</tr>
<tr>
<td>sample5</td>
<td>29</td>
<td>2.37</td>
</tr>
</tbody>
</table>

2. 2 Samples similarity and cluster analysis

Clustering analysis can reflect the similarity of the bacterial community in different samples. Sample 2 and sample 3 clustered into a branch, and then clustered with sample 1 as a branch (Figure 2). Sample 4 and sample 5 clustered into a branch; this indicates that samples from different habitats have similar bacterial communities.

2. 3 Dominant microbial community analysis

According to the T-RFLP fingerprinting analysis of Hha I and Msp I restriction enzymes, the dominant bacteria in each sample are shown in Figure 3. There are five types of bacteria in the five samples: Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Planctomycetes. The dominant bacteria in each sample are as follows: sample 1 is Bacillus (18.7%); sample 2 is Pseudomonas (21.2%); sample 3 is Micrococcus (13.6%); sample 4 is Bacillus (14.0%); and sample 5 is Arthrobacter (16.3%).
表2 优势细菌

<table>
<thead>
<tr>
<th>Sample</th>
<th>Hha I observed</th>
<th>Msp I observed</th>
<th>Area/%</th>
<th>Accession</th>
<th>Similar group</th>
<th>Phylum</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 1</td>
<td>210.74</td>
<td>147.77</td>
<td>6.7</td>
<td>EF592490</td>
<td>Bacillus</td>
<td>Firmicutes</td>
</tr>
<tr>
<td>61.74</td>
<td>88.88</td>
<td>6.1</td>
<td>EF452662</td>
<td>Paenibacillus</td>
<td>Proteobacteria</td>
<td></td>
</tr>
<tr>
<td>176.96</td>
<td>129.23</td>
<td>5.3</td>
<td>EU131161</td>
<td>Acetobacter</td>
<td>Actinobacteria</td>
<td></td>
</tr>
<tr>
<td>61.74</td>
<td>462.81</td>
<td>21.2</td>
<td>AM411057</td>
<td>Pseudomonas</td>
<td>Proteobacteria</td>
<td></td>
</tr>
<tr>
<td>179.02</td>
<td>142.27</td>
<td>16.9</td>
<td>HQ327127</td>
<td>Arthrobacter</td>
<td>Actinobacteria</td>
<td></td>
</tr>
<tr>
<td>96.31</td>
<td>141.81</td>
<td>8.5</td>
<td>FJ529274</td>
<td>Acidobacterium</td>
<td>Acidobacteria</td>
<td></td>
</tr>
<tr>
<td>91.08</td>
<td>138.71</td>
<td>7.6</td>
<td>FJ481334</td>
<td>Chloroflexus</td>
<td>Chloroflexi</td>
<td></td>
</tr>
<tr>
<td>104.47</td>
<td>96.42</td>
<td>4.8</td>
<td>AB470321</td>
<td>Bacteroides</td>
<td>Bacteroidetes</td>
<td></td>
</tr>
</tbody>
</table>

讨论

同为花岗岩内生细菌，乌苏的优势类群为变形菌门（21.2%）和厚壁菌门（18.1%），美国犹他州的为变形菌门（54.5%）和厚壁菌门（27.3%），两者结果类似；而美国南洛基山的为放线菌门（41%），厚壁菌门仅为9%。一号冰川和木垒变质岩的优势类群均为变形菌门，分别占整个细菌种群的21.4%和22.1%，但种属不同，一号冰川为Azotobacter、Rhizobium和Sphingomonas，木垒为Pseudomonas、Rhizobium和Flavobacterium。此外降雨量、岩石渗透率及元素组成也可影响微生物多样性和丰度。
Chloroflexus, Flavobacterium, Bacillus, Arthrobacter, Rhodobacter.

(24.5%)(62%), Whipple, pH, Mn^{2+}, Mn^{4+}, Fe, Al, Si, Mn, Bacillus, Arthrobacter, Rhodobacter.

Walker JJ, Pierson JD, Nyberg AM, Spilde MN, Aitken PM, McFadyen L, Kuhlman KR. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States) and Al-Jafr Basin (Jordan) Deserts. Journal of Geophysical Research 2010; 105: 1109-1118.

Torre JR, Goeble BM, Friedmann EI, Pace NR. Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology 2003; 69 (7): 3858-3867.

Fine-scale vertical distribution of bacteria in the East CP. Hypolithic Cyanobacteria Warren-Rhodes KA. Environmental earth sciences implications in desert varnish

Kuhlman GM Kuhlman KR. Diversity of Microorganisms within Rock Varnish in the Whipple Mountains California. Applied and Environmental Microbiology 2006 72 (2) : 1708-1715.

McNamara CJ Perry IV TD Pearce KA Hernandez-Duque G Mitchell R Epilithic and Endolithic Bacterial Communities in Limestone from a Maya Archaeological Site. Microbial Ecology 2006 51 (1) : 51-64.

Kuhlman GM Kuhlman KR. Diversity of Microorganisms within Rock Varnish in the Whipple Mountains California. Applied and Environmental Microbiology 2006 72 (2) : 1708-1715.

Terminal restriction fragment length polymorphism analysis of endolithic bacteria community at special habitats in Xinjiang

Wenting Mu1 Tao Zhang2 Jian Sun2 Jun Zeng2 YingHua Xu2 Zunfeng Wu2 Wen Hu2 Kai Lou2*

1 College of Life Science and Technology of Xinjiang University4 Urumqi 8300465 China
2 Institutes of Microbiology5 Xinjiang Academy of Agriculture Science4 Urumqi 8300915 China

Abstract:

Objective: In order to investigate the composition and diversity of endolithic bacteria at special habitats in Xinjiang.

Methods: Five rock samples were collected including Wusu’s granite (sample 1), Glacier No. 1 and Mulei’s metamorphic rock (sample 2 sample 3), Yumin and Tokesun’s Rock varnish (sample 4 sample 5). Endolithic bacterial community composition and diversity were analyzed by the method of Terminal Restriction Fragment Length Polymorphism.

Results: Differences in diversity indexes among samples were not apparent. Clustering analysis suggested that similarity coefficient was higher in same rock type, sample 2 and sample 3 were grouped together, then sample 1 clustered with them and sample 4 and sample 5 were classified together. All samples harbored these phyla such as Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes. Acidobacteria and Planctomycetes existed in sample 1 and sample 2 respectively; Sample 5 was dominated by Actinobacteria, while other samples were dominated by Proteobacteria.

Conclusion: The endolithic bacterial composition of same rock type collected at various habitats was different. Meanwhile, a diversity of novel species and lineages maybe existed in rocks.

Keywords: endolithic bacteria, T-RFLP (Terminal Restriction Fragment Length Polymorphism), diversity

Supported by the Open Project of the Key Lab of Microorganisms in Xinjiang Specific Environment (XJYS0203-2009-06)

* Corresponding author. Tel/Fax: +86-991-4521590; E-mail: louka02@mail.tsinghua.edu.cn

Received: 30 November 2011/Revised: 7 February 2012