水稻白叶枯病菌 TonB-Dep-Rec 蛋白家族成员 Tdrxoo 的功能鉴定

许景升, 吴茂森, 何晨阳
(中国农业科学院植物保护研究所, 植物病虫害生物学国家重点实验室, 北京 100193)

摘要: 目的] 旨在揭示水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo) 致病性和运动性及其基因表达的调控途径。[方法] 本研究通过基因克隆、序列分析和缺失突变方法, 对与应答调节子 GacAxoo 互作的 Tdrxoo 的分子特征和功能进行了鉴定。[结果] 利用序列特异性引物进行基因扩增, 成功地从野生型菌株 PX099^* 中克隆了 tdrxoo 基因。Tdrxoo 与其它病原黄单胞菌的同源序列高度保守, 具有 TonB-Dependent-Receptor (TDR) 结构域, 推测其是位于细菌外膜, 可能接收来自细菌体外环境信号的蛋白。用基因标记交换法, 构建了 Δtdrxoo 基因缺失突变体。与 PX099^* 相比, Δtdrxoo 在人工培养条件下的生长受到影响, 致病性完全丧失, 脑外纤维素酶和木聚糖酶活性和运动能力显著减弱, 基因互补可以使之恢复; Δtdrxoo 基因缺失无明显改变。[结论] Tdrxoo 作为一种细胞外膜蛋白, 可能参与调控了病菌的生长、致病性、胞外酶活性和运动性等表型。

关键词: 水稻白叶枯病菌; Tdrxoo; TonB-Dep-Rec 蛋白; 致病性; 调控作用

由信号感应子/应答调节子组成的双组分系统 (two-component regulatory system, TCS) 通过信号识别和传递, 调节基因转录, 控制细菌细胞反应。根据全基因组序列推测, 水稻白叶枯病菌 Xanthomonas oryzae pv. oryzae, 简称 Xoo 存在几十对 TCS 成员, 共同组成了精密的调控网络系统。由于 TCS 组成的调控网络系统进行解析, 将可以阐明病菌致病性的分子机理。

前人研究表明, 必须调节子 GacA 作为一个主控因子, 控制了细菌毒性、运动性、胞外多糖和酶类产生、毒素合成、群体感应、生物膜形成、存活、致病性代谢产物产生等表型及基因表达。在前期研究中, 我们已对 GacAxoo 基因结构和功能进行了分子鉴定; 同时, 利用酵母双杂交方法, 获得了一个 GacAxoo 的互作蛋白 Tdrxoo, 它属于 TonB-Dep-Rec 蛋白家族成员。本文报道通过这一系统分析和缺失突变分析, 对 Tdrxoo 的结构和功能进行分子致病性的研究结果。本研究的目的在于为发掘可能由 Tdrxoo/GacAxoo 组成的一对新型 TCS, 为阐明其对病菌生长、致病性、运动性及其它基因表达的调控作用机理提供科学依据。

1 材料和方法

1.1 材料

1.1.1 主要试剂和仪器: 凝胶回收纯化试剂盒、pMD18-T Vector 试剂盒以及限制性内切酶均购自宝生物工程（大连）有限公司, Carboxymethyl Cellulose 和 Remazol Brilliant Blue R - D-Xylan （RBB-xylan）
购自 Sigma-Aldrich Co.。电击仪（BIO-RAD 公司
Pluse Controller 仪）。

1.1.2 培养基、质粒和培养条件：供试细胞菌株和质粒的特征及来源列简 1。Xoo 菌株在 28°C PSA 培养基上培养。大肠杆菌 (Escherichia coli) 在 37°C LB

培养基上培养。实验用抗生素浓度为卡那霉素 (Kan) 25 mg/L, 壮观霉素 (Sp) 100 mg/L, 氨苄青霉素 (Amp) 100 mg/L。质粒 pK18mobSacB 为中国科学院微生物研究所植物基因组学重点实验室惠赠，该质粒不能在 Xoo 中复制。

表 1 本研究所用细菌菌株及质粒

<table>
<thead>
<tr>
<th>Strains or plasmids</th>
<th>Characteristics</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli DH5α</td>
<td>ϕ80 lacZΔM15, Δ(lacZYA-argF)U169, recA1, endA1, thi-1</td>
<td>Lab collection</td>
</tr>
<tr>
<td>X. oryzae pv. oryzae</td>
<td>Wild-type strain, Philippine race 6</td>
<td>Lab collection</td>
</tr>
<tr>
<td>PXO99A</td>
<td>tdxoo gene inserted by pK-tdr, Kan⁸</td>
<td>This study</td>
</tr>
<tr>
<td>Δtdxoo</td>
<td>Δtdxoo complemented with pH-tdxoo, Kan⁸, Sp⁸</td>
<td>This study</td>
</tr>
<tr>
<td>Plasmid</td>
<td>pH1, ptdr, pK18mobSacB</td>
<td>TaRaKa</td>
</tr>
</tbody>
</table>

1.2 基因克隆和序列分析

1.2.1 引物：根据含有 TonB-Dep-Rec 片段的基因

tdxooF/R 和 tdrF/R。表 2 为本次研究所用引物，由上海生工生物工程技术有限公司合成。

表 2 本研究所用引物序列

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence (5‘→3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tdxooF</td>
<td>TGGGCGACCTTGTAGTCGCCACCA</td>
</tr>
<tr>
<td>tdxooR</td>
<td>CCATTGCGCCGGGCGGACTCTG</td>
</tr>
<tr>
<td>tdrF</td>
<td>ATCACTGTTATATAATTTACTG</td>
</tr>
<tr>
<td>tdrR</td>
<td>GCTGACGGTGTCAGATCGAAGCG</td>
</tr>
</tbody>
</table>

1.2.2 PCR：以 PXO99A 基因组 DNA 为模板，
tdxooF/tdxooR 为特异性引物，进行 PCR 扩增，扩增条件为：95°C 5 min; 95°C 45 s, 60°C 3 min, 72°C 1 min, 35 个循环; 72°C 7 min。扩增产物经 1.2% 琼脂糖凝胶电泳检测。

1.2.3 基因克隆和序列分析：分别使用凝胶回收纯化试剂盒和 pMD18-T Vector 试剂盒纯化和连接目的基因。连接产物按照文献[7]的方法转化 E. coli DH5α 感受态细胞。采用 ABI Prism 377 测序仪测定目的基因的核苷酸序列。序列分析软件为：DNASTar 7.1、DNAMAN 6 和 BioEdit 7。蛋白质结构域分析通过 SMART 程序和 CDS 程序进行。BLAST 进行序列同源性比对。

1.3 基因标记交换与突变体构建及其互补分析

参照文献[8] 的方法进行基因标记交换。以 PXO99A 基因组 DNA 为模板，设计引物 tdrF/tdrR (表 2)，扩增 tdxoo 基因片段。将该片段连接 pMD18-T 载体，转化 E. coli 感受态细胞，提取重组子质粒 DNA, EcoR I 和 Hind III 双酶切分析质粒 DNA, 回收酶切片段，与经过相同内切酶处理的
pK18mobSacB 载体连接，转化 E. coli 感受态细胞。选取阳性克隆提取重组子质粒 DNA, EcoR I 和 Hind III 双酶切分析验证。

将 pK-tdr 通过电击导入 PXO99A 感受态细胞中，转化液铺于含 Kan² 的 PSA 平板，在 28°C 下培养 3～5 d; 将阳性转化子菌落重新转接于含 Kan² 的 PSA 平板，转接 3～4 次; 然后将阳性菌落接种含 Kan² 的 M210 液体培养基，在 28°C 下振荡 (200 r/min) 培养 48 h, 接种针蘸取少量菌液划线于含 Kan² 的 PSA 平板，在 28°C 下培养 48～72 h; 拾取阳性单克隆接种含 Kan² 的 M210 液体培养基，在 28°C 下振荡 (200 r/min) 培养 48 h, 保存 tdxoo 突变体菌株 -70° C。用 PCR 引物 tdxooF/tdxrR 分析验证 Δtdxoo 突变体。

采用引物 tdxooF/tdxrR 扩增含自身启动子的 tdxoo，克隆到 pMD18-T 载体上，测序鉴定后，用 Kpn I 和 Hind III 双酶切回收约 3.2 kb 的扩断，与经同样双酶切处理的 pHM1 载体相连接，构建 tdxoo 突变基因互补质粒，转化 E. coli DH5α 感受态细胞，提取阳性克隆中的质粒，将其转入 tdxoo 突变体中，含 Sp⁸ 和 Kan² 的 PSA 平板筛选阳性转化子。
1.4 生长曲线测定
将待测菌株在28℃下振荡培养48 h后，用新鲜的 M210 或 XOM2 培养基将各菌稀释至 OD_{600} = 0.5，以1:1000 (V/V) 的比例将各个相同浓度的菌种接种于 100 mL 的 M210 或 XOM2 培养基中，在28℃下振荡(200 r/min) 培养，每隔6 h同时测定各菌株在600 nm 的吸光值。

1.5 致病性测定
将待测菌株在28℃下振荡培养至10^{8} CFU/mL 以上，离心收集菌体，无菌水稀释菌液至 OD_{600} = 0.5。用剪叶法将稀释好的各个菌种均匀接种到生长期为40 d 的感病水稻品种 IR24 的 2～3 叶心叶上，每个菌株接种叶片15张。温室温度控制在25～35℃，湿度达到90% 左右，以利于 Xoo 的发病，接种后12 d 和20 d 调查白叶枯病的发病情况。

1.6 脑外降解酶类活性测定
参照文献[7-9] 的方法，检测实验培养基上菌落周围产生的底物水解圈，进行木聚糖酶和纤维素酶活性的测定。

1.7 运动性检测
运动性检测方法参照 Shen 等[10] 的方法，将待测细菌在 NA 平板上活化后，在含相应抗生素的 NA 液体培养基中振荡培养48 h, 至对数生长期，离心收集菌体，无菌水稀释菌液至 OD_{600} = 0.5, 取1 μL 培养液点按于半固体培养基平板，28℃温箱培养 4 d 或以上，观察细菌运动痕迹。

1.8 嗜铁素产生测定

2 结果和分析

2.1 tdxroo 基因克隆、功能结构域和序列同源性

SMART 程序分析显示 tdxroo 基因全长为 2910 bp，编码 969 个氨基酸，分子量为 103. 3 kDa，等电点为 4. 656。1～23 位氨基酸为信号肽，55～167 位氨基酸为 plug 结构域，608～969 位氨基酸为 TonB-Dependent Receptor 结构域 (图 1)。Tdxroo 具有接受胞外信号的胞外环和可以进行跨膜的反向 β-折叠桶。CDS 程序搜索保守结构域，发现 Tdxroo 与离子通道配体蛋白、铁离子运输蛋白，TonB-Dep-Rec 蛋白和细菌外膜蛋白具有同源性。推测其是位于细菌外膜的蛋白，可能接收来自细菌体外环境的信号。tdxroo 在已测序菌株 Xoo KACC10331 中注释为未知功能蛋白。

分析已完成全基因组序列测定的六个黄单胞属细菌的基因组序列，发现 tdxroo 及其在其它黄单胞属细菌中的同源基因，在基因组中的位置具有高度保守性，tdxroo 上游为热激蛋白基因和与内膜转运相关的基因，下游为 terR 类调控抑制子和水解酶相关基因(图 2)。

2.2 Δtdxroo 突变体构建和互补
引物 5’tdrF/R 扩增 tdxroo 含有的 TonB-Dep-Rec 结构域，长度为 571 bp，EcoR I 和 Hind III 双酶切分因突变体 Δtdxroo。

嗜铁素检测培养基 (CAS-PSA) 制作参照 Schwyn 和 Neilands 方法[11]；取 0.012 g 铬天青 S (CAS) 溶于 10 mL dd_{18}O 水中, 并与 2 mL 1 mmol/L FeCl_{3} 溶液混匀配制为溶液 A; 取 0.015 g 十六烷基三甲基溴化铵 (CTAB) 溶于 8 mL dd_{18}O 水中配制溶液 B; 将溶液 A 慢慢加入到溶液 B 中，充分混匀即为 CAS 液染液。将待测菌用牙签蘸取少许菌液点接于含 1% CAS 液染的 PSA 平板上。28℃培养 48 h 后，由于嗜铁素竞争培养基中 EDTA 整合的铁离子，使培养基由蓝色变成黄色，观察菌落黄色晕圈的有无或者大小，判断菌株间嗜铁素产量的差异。每个处理设 3 个重复。

图 1 Tdxroo 保守结构域

Fig. 1 Domain architecture of Tdxroo signal peptide (red).
互补质粒 pH-tdrxoo，将 pH-tdrxoo 电击导入 Δtdrxoo 感受态细胞，在含 Sp[®] 和 Kan[®] 的 PSA 平板获得阳性转化子，命名为 Δtdrxoo-C。从互补菌株中提取质粒，Kpn I 和 Hind III 双酶切分析，证明互补菌株含有 pH-tdrxoo 质粒。

2.3 Δtdrxoo 的生长

在丰富培养基 M210 中，Δtdrxoo 时滞期比 PXO99^a 晚 12 h，而且在静止生长期突变体菌株的最大菌浓度明显低于 PXO99^a，互补菌株 Δtdrxoo-C 则恢复至野生型水平（图 3-A）。选择 hrp 基因诱导培养基 XOM2 模拟细菌在植物体内的环境。与 PXO99^a 相比，Δtdrxoo 菌株在 XOM2 培养基中不能达到静止生长期（图 3-B），生长受到严重抑制。因此，tdrxoo 基因突变使得 Xoo 在 M210 和 XOM2 中的生长均受到影响。

2.4 Δtdrxoo 致病性、胞外降解酶活性和运动性

与 PXO99^a 相比，Δtdrxoo 丧失致病性，在接种叶片上几乎看不到病斑的产生（图 4-A），纤维素酶和木聚糖酶活性、运动能力明显减弱（图 4-B），互补菌株 Δtdrxoo-C 的致病性、酶活性、运动能力恢复至 PXO99^a 相同的水平。表明 tdrxoo 的突变影响了 Xoo 的致病性、纤维素酶和木聚糖酶活性以及运动性。

2.5 Δtdrxoo 嗜铁素产生

各个测试菌株的嗜铁素产生水平并无明显差异，表明虽然 Tdrxoo 具有 TonB-Dep-Rec 结构域，但是该基因的表达与否与胞外铁离子的浓度无关（结果未列出）。

图 2 tdrxoo 基因在黄单胞属细菌基因组中位置

Fig. 2 The genome organization of tdrxoo in completely sequenced Xanthomonas bacterial genomes. Xae, X. axonopodi pv. citri; Xcv, X. campestris pv. vesicatoria; Xcc and Xc, X. campestris pv. campestris.

图 3 PXO99^a 及 tdrxoo 突变体株和互补株在 M210 和 XOM2 培养基中生长曲线测定

Fig. 3 The growth curve of PXO99^a and its tdrxoo derivatives in M210 (A) and XOM2 (B) medium.

3 讨论

tdrxoo 基因突变对病菌嗜铁素产生无明显影响。TDR(TonB-dependent receptors)蛋白最初是作
为铁离子转运载体而为人们所认知。由位于细菌细胞膜的TonB-Exb-B-ExbD复合体提供能量，位于外膜的依赖于TonB的受体特异性结合形成的Fe^{3+}离子的铁载体，将Fe^{3+}从胞外转运至周质空间。近年来，研究表明TDR除参与铁离子运输外，在细菌转运和吸收其他大分子过程中也具有重要作用。在甘蓝黑腐病菌中，包含TDR基因的suxABC基因簇调控蔗糖的运输，而在丙酸菌中，sal操纵子含有一个trd基因，控制着细菌对植物中水杨酸的吸收和代谢。本研究发现trd基因突变对细菌的感染无明显影响，可能Tdrxoo涉及某些大分子的运输。

trd基因参与调控了病原致病性。trd基因在黄单胞菌属中是保守的，在柑橘溃疡病菌、甘蓝黑腐病菌、辣椒斑点病菌、Xoo基因组中分别存在二三十个trd基因，仅有少数trd基因涉及铁离子运输，其他的基因功能仍未知的。在甘蓝黑腐病菌（Xoo）中，ton-B-exbB1-exbD1基因簇是引起寄主花椰菜黑腐病和激发非寄主植物HR所必需的。青枯病菌中PrhA作为一个外膜蛋白受体，具有TonB-Dep-Rec结构，但是PrhA并不能感应胞外铁离子的浓度，而感应来自拟南芥或烟草悬浮细胞的非扩散性信号分子，调控hrp基因簇。因此，PrhA作为受体位于这个信号级联调控途径的顶级位置，接受来自植物特异性信号；但是prhA基因突变，青枯病菌对烟草和拟南芥仍具有致病性。水稻条斑病菌prhA基因同样具有TDR结构域，该基因突变导致致病性和致敏性丧失，但其仍为水稻幼苗叶片的水稻症状，hap1基因表达不受影响。然而，trd基因与植物青枯病菌和水稻条斑病菌prhA比较，发现三者核苷酸同源性为41%，氨基酸同源性仅为15%。因此，trd基因明显不同于上述两个基因，其参与调控的途径可能是一个全新的信号途径，这或许是trd与prhA表型差异的原因。

trd基因参与调控了病原菌生长。在甘蓝黑腐病菌中，suxABC由相邻的四个基因组成，参与蔗糖的运输和代谢。suxA具有TDR结构域，suxB编码蔗糖水解酶，suxC编码蔗糖运输蛋白，辅助底物分子通过细菌细胞内膜；suxD编码lacI/galR类转录抑制子。suxA、suxB和suxC的分别突变，均导致Xoo相似的表型变化，包括致病性丧失和生长缓慢。在Xoo基因组中，trd基因相邻上游两个ORF中XOO1806为内膜转运蛋白，XOO1807为热激蛋白基因，相邻下游两个ORF中XOO1803为水解酶基因，XOO1804为TetR转录调控抑制子，具有HTH结构域。trd基因位置类似于Xoo且saxABC基因簇，推测Trd基因参与了蔗糖代谢和运输。trd突变导致了Xoo不能利用培养基中的蔗糖作为碳源。因此，Trd基因突变体生长缓慢，进而影响到其它生理生化过程，包括胞外酶活性和运动能力下降。

本研究初步阐述了Trd的调控，然而Trd的调控机制，尤其是否以及如何通过其与效应蛋白GacXoo影响Xoo表型的变化仍需深入研究。

参考文献

Identification and functional analysis of Tdrxoo, the member of TonB-dependent-receptor family proteins in Xanthomonas oryzae pv. oryzae

Jingsheng Xu, Maosen Wu, Chenyang He*
(State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

Abstract: [Objective] To demonstrate the novel regulatory pathways mediated in bacterial pathogenicity and motility in Xanthomonas oryzae pv. oryzae (Xoo), the casual agent of bacterial blight in rice. [Methods] Molecular identification and functional characterization of Tdrxoo, which interacts with GacAxoo of the two-component regulatory system (GacSxoo/GacAxoo) in Xoo, were performed through gene cloning, sequencing and disrupt analysis. [Results] tdrxoo was successfully cloned from the genomic DNA of wild-type PX099Δ by using polymerase chain reactions with the degenerated primers tdrxooF/R. The tdrxoo gene was found to be highly conserved in the plant-pathogenic Xanthomonas spp. Sequence analysis showed that Tdrxoo was homologous to a protein with the TonB-Dependent-Receptor (TDR) domain. Tdrxoo is probably localized in the outer membrane of bacterial cells, recognizing the signals from extracellular environment, and inducing the intracellular signal transduction. Δtdrxoo, the disrupted mutant, was obtained after a single cross-over recombination event between tdrxoo and the plasmid pK-tdr with the tdrxoo segment. The mutant lost the ability of causing the disease, and was affected in growth in vitro compared to PX099Δ. In addition, the motility and the extracellular enzymes production of Δtdrxoo were reduced, which can be restored through complementation of the Δtdrxoo mutant by introduction of tdrxoo. tdrxoo deficiency didn’t affect siderophore production. [Conclusion] According to the existence of tdrxoo in Xoo genome and phenotype of Δtdrxoo, Tdrxoo, as the outer membrane protein, is proposed to be involved in regulation of pathogenicity, extracellular enzyme production, the growth and motility of Xoo.

Keywords: Xanthomonas oryzae pv. oryzae; Tdrxoo; TonB-Dep-Rec protein; pathogenicity; regulation

(本文责编：王晋芳)

Supported by the Natural Science Foundation of China (30671353) and the Special Funding of State Key Laboratory of China (SKL2007SR06)
* Corresponding author. Tel: +86-10-62894147; E-mail: cyhe@caas.net.cn
Received: 30 June 2009/ Revised: 15 September 2009

1953 年创刊以来所有文章全文上网

2008 年 1 月，《微生物学报》自 1953 年创刊以来的所有文章开始全文上网。欢迎广大读者登陆本刊主页(http://journals.im.ac.cn/actamicrocn)浏览、查询、免费下载全文！由于《微生物学报》历史久远，为方便读者查阅，将期刊变化作以下统计。

《微生物学报》刊期统计表
2010 年 2 月统计

<table>
<thead>
<tr>
<th>时间</th>
<th>刊期</th>
<th>册号</th>
<th>期号</th>
</tr>
</thead>
<tbody>
<tr>
<td>1953 - 1956</td>
<td>半年刊</td>
<td>1 - 4</td>
<td>1 - 2</td>
</tr>
<tr>
<td>1957 - 1958</td>
<td>季刊</td>
<td>5 - 6</td>
<td>1 - 4</td>
</tr>
<tr>
<td>1959</td>
<td>季刊</td>
<td>7</td>
<td>1 - 2</td>
</tr>
<tr>
<td>1959 - 1962</td>
<td>停刊 3 年</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1962</td>
<td>季刊</td>
<td>8</td>
<td>3 - 4</td>
</tr>
<tr>
<td>1963 - 1965</td>
<td>季刊</td>
<td>9 - 11</td>
<td>1 - 4</td>
</tr>
<tr>
<td>1966</td>
<td>季刊</td>
<td>12</td>
<td>1 - 2</td>
</tr>
<tr>
<td>1966 - 1972</td>
<td>停刊 6 年半</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1973 - 1988</td>
<td>季刊</td>
<td>13 - 28</td>
<td>1 - 4</td>
</tr>
<tr>
<td>1989 - 2007</td>
<td>双月刊</td>
<td>29 - 47</td>
<td>1 - 6</td>
</tr>
<tr>
<td>2008</td>
<td>月刊</td>
<td>48</td>
<td>1 - 12</td>
</tr>
<tr>
<td>2009</td>
<td>月刊</td>
<td>49</td>
<td>1 - 12</td>
</tr>
<tr>
<td>2010</td>
<td>月刊</td>
<td>50</td>
<td>2</td>
</tr>
</tbody>
</table>