青霉素立体选择性环氧氧化顺丙烯磷酸产生磷霉素*

石家庄 崔福棉 葛 猛**

摘要:由土壤中分离出一株青霉（Penicillium sp.），编号 F5，能选择性的将顺丙烯磷酸环氧化为磷霉素，在 pH 7.5, 28°C, 280r/min 条件下培养 6d, 底物浓度 0.3%时, 产物浓度达 2.2mg/mL, 产率 41%; 底物浓度 0.6%时产率 8%。转化产物经磷霉素敏感型生物检测, TLC 检测, 并与标准品比较, 确证为磷霉素。

关键词: 青霉素, 环氧磷磷酸, 磷霉素, 生物转化

磷霉素 [(-)-1R, 2S-环氧丙基磷酸, (-)-1R, 2S-epoxypropylphosphonic acid, Fosomycin, FoM] 是一种抑制细菌细胞壁合成的临床常用的重要广谱抗生素, 1969 年, Hendlin 等人自弗氏链霉菌(1) 中发现。工业上以化学合成法进行生产, 得到磷霉素的外消旋体, 经化学拆分, 得到磷霉素。由顺丙烯磷酸 (cis-propenylphosphonic acid, PPOH) 到磷霉素的实际收率低于 32% (2)。由于右旋磷霉素完全废弃, 加之需要大量的化学拆分试剂, 造成资源浪费和环境污染。利用微生物可以将磷霉素合成的中间体顺丙烯磷酸直接环氧化为磷霉素, 该反应为立体选择性反应, 不存在化学拆分的问题, 且条件温和, 污染较少, 所得产品的光学纯度较高, 引起了国内外研究者的注意 (3-5)。由于存在底物或产物抑制作用, 目前达到的最高水平是细菌在底物浓度达到 0.5% (g/mL 下同) 时, 转化率 40%, 产物浓度 2mg/mL (3); 真菌在顺丙烯磷酸浓度为 0.3% 时, 其转化率为 40%, 最高产酶浓度 1.15mg/mL (5)。我们将从土壤中分离到 5 株青霉 (Penicillium sp.) 可以将 PPOH 转化为 FoM, 其中青霉 F5 能以可溶性淀粉为碳源, 尿素为氮源转化顺丙烯磷酸生成磷霉素, 在底物浓度为 0.6% 时产率为 8%, 最高产酶浓度 2.2mg/mL。

1 材料和方法

1.1 菌种

转化菌: 青霉 F5, 本实验筛选, 28°C 在马铃薯葡萄糖琼脂斜面上培养 5d 后使用。磷霉素敏感检测菌; 赛氏杆菌 (Serratia sp.) SP4, 在由蛋白陈 1% (g/mL 下同), 葡萄糖、牛肉膏、酵母膏和氯化钠均为 0.5% 组成的琼脂斜面上 37°C 培养 16h 后使用。

* 中国科学院重大研究课题资助 (KY95-1-A3-304-01-02), 微生物资源前期开发国家重点实验室客座课题

作者简介: 石家瑞(1964 -)，男(回族)，山东省济宁市人，中国科学院微生物研究所助理研究员，主要从事菌学与微生物药学的研究。

** 北京理工大学 2000 届毕业生

1.2 主要试剂

硅胶板，青岛海洋化工厂生产；标准磷酸盐（NiO），顺丙烯磷酸（PPOH，纯度≥85%，本文所用底物浓度为换算成纯 PPOH 的浓度），由东北制药总厂提供；化学试剂皆为分析纯，其它为生化试剂。290 阴离子交换树脂，华北制药厂生产。

1.3 培养基与转化条件

指示菌培养基：牛肉蛋白胨 5 g，牛肉膏 3 g，酵母膏 2 g，洋菜 15 g，蒸馏水定溶至 1L。熔融后，每 100mL 接入指示菌悬液 5mL，倾倒平皿。转化培养基：可溶性淀粉 50 g，尿素 3.5 g，酵母膏 7 g，FeSO₄·7H₂O 3 g 和 PPOH 5 g，pH 7.5，蒸馏水定溶至 1L。250mL 三角瓶装入上述培养基 30mL，接入转化菌，28℃，280r/min 振荡培养 6 d。

1.4 磷霉素的检测与鉴定

1.4.1 生物检测：磷霉素检测按文献[1]所载的生物检测法进行，将 10μL 样品加于直径 8mm 的圆形滤纸片上，吹干，粘于含磷霉素敏感指示菌的培养皿上。28℃，倒置培养 16h，磷霉素可产生清晰透明之抑菌圈。抑菌圈的直径与磷霉素浓度的对数在 0.25mg/ML～10.0mg/ML 范围内成正比，据此可得磷霉素浓度标准曲线。

1.4.2 磷霉素的薄层层析（TLC）：参照文献[7]进行，展开剂系统：正丁醇；乙酸：水（3:1:1）。显色剂：a. 含 0.1% FeCl₃·6H₂O 的 80% 乙醇水溶液; b. 含 1% 磷酸二氢钠的 80% 乙醇水溶液，先 a 后 b，磷霉素显白色斑点，比较样品与标准品的 Rf 值可验证磷霉素的存在。将展开后的硅胶板置于含指示菌的培养皿上，待浸润后取下，28℃，培养 16h，含磷霉素的部分发生抑菌圈。

1.4.3 产物粗分离：发酵液离心，上清经 290 阴离子树脂柱交换吸附，水洗，3%～6% NaCl 梯度洗脱，活性部分减压浓缩，硅胶柱脱盐，75%～0% 甲醇洗脱，减压浓缩得粗品。

2 结果

2.1 碳源对转化的影响

以 5% 碳源进行磷霉素的转化实验。表 1 显示可溶性淀粉优于甘油，这在真菌转化 PPOH 产生磷霉素中未见报道。

<table>
<thead>
<tr>
<th>Carbon source</th>
<th>Glycerol</th>
<th>Glucose</th>
<th>Sucrose</th>
<th>Galactose</th>
<th>Maltose</th>
<th>Xylose</th>
<th>Araabinose</th>
<th>Soluble starch</th>
</tr>
</thead>
<tbody>
<tr>
<td>g/cm*</td>
<td>1.80</td>
<td>1.65</td>
<td>1.81</td>
<td>1.90</td>
<td>1.75</td>
<td></td>
<td></td>
<td>2.1</td>
</tr>
</tbody>
</table>

* The diameter of inhibition zone;"-" No inhibition zone.

2.2 氮源对转化的影响

以不同的氮源进行转化实验，小带鱼粉蛋白胨优于牛肉蛋白胨、大豆蛋白胨和玉米浆，并不加酵母膏，2.5% 的浓度转化效果最佳。以尿素为氮源的转化率与鱼蛋白胨相似，但需加入酵母膏。硫酸铵、磷酸氢二铵、氯化铵、硝酸铵和硝酸钠等无机氮源不转化。

2.3 酵母膏用量对转化的影响

以尿素为氮源，加入不同浓度的酵母膏 (0%，0.3%，0.5%，0.7%，1.0%，1.5%) 进行转化实验，0.7g (g/mL) 达到最高转化值，浓度继续增加转化率降低。
2.4 铁离子对转化的影响

研究了 Na⁺、K⁺、Mg²⁺、Ca²⁺、V³⁺、Mn⁴⁺、Fe³⁺、Fe²⁺/Fe³⁺、
Co²⁺、Mo⁶⁺、Cu²⁺ 和 Zn²⁺ 等金属离子对转化的作用，其中
铁离子对转化的促进作用非常明显，其它金属离子对该
转化反应影响不大，0.3%～0.5%（g/mL）硫酸亚铁可达
到最高转化水平，此范围内增加硫酸亚铁的浓度，转
化率不再增加或降低。

2.5 pH 对转化的影响

按以上确定的培养基成分配制培养基，并调节不同的
pH 值进行实验，结果见图 1。在 pH5～9 的范围内均
能实现由顺丙烯酸到磷酸的转化，最适 pH 值为
pH7.5。

2.6 底物浓度与转化的关系

30mL 培养基中，培养 6d 后，测定磷酸浓度，发酵
液体积约为 25mL。表 2 显示，当底物浓度 ≤0.6%（g/mL）
时，可以实现由顺丙烯酸到磷酸的转化。当底物浓度超过一定值时（约 0.8%），转化不
再进行，菌体生长良好。该结果也说明磷酸是由 PPOH 转化产生，而非发酵产生。

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Effects of the concentration of PPOH to the biotransformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPOH concentration（%）</td>
<td>0</td>
</tr>
<tr>
<td>FoM concentration（mg/mL）</td>
<td>0</td>
</tr>
<tr>
<td>Yield（%）</td>
<td>0</td>
</tr>
</tbody>
</table>

“+”indicating the inhibition zone was not clear.

图 2 微生物转化 PPOH 的时间进程

Fig.2 The time course of the biotransformation of PPOH
—■—The diameter of inhibition zone；—●—pH.

图 3 PPOH 转化产物的薄层层析图

Fig.3 The figure of TLC for the products of PPOH biotransformation
1. The sample of the supernatant from the culture broth；2. The
sample of the FoM isolated from the culture broth；3. Standard
FoM；4. Standard PPOH.
2.7 青霉转化的时间过程

图2表示微生物转化反应的时间过程曲线，按前述培养基发酵培养9d，得到pH和产物浓度的变化与时间的关系，在第6d可达到最佳发酵水平。

2.8 转化产物的TLC分析

分别以发酵液和粗提纯的磷霉素进行TLC分析，结果见图3，该结果与文献[7]记载相符（Rf₂ - Rf₁ = 0.38）。

3 讨论

当PPOH浓度较低时，磷霉素的测定浓度与理论转化浓度一致，转化率为100%，这说明该反应是立体有择性反应。

微生物环氧化顺丙烯磷酸产生磷霉素，分为细菌和真菌两大类。有文献报道细菌的环氧化作用与Bromoperoxidase和Bromohydrin epoxidase有关[15]，但该真菌的反应条件与以上二酶的反应条件完全不同。

参考文献

THE EPOXIDATION OF cis-PROPENYLPHOSPHONIC ACID TO FOSFOMYCIN BY PENCILLIUM SP.

Shi Jiaji, Cui Fumian, Ge meng

(The Institute of Microbiology, The Chinese Academy of Sciences, Beijing 100080, China)

Abstract: One strain of Penicillium sp. F5, found from soil sample, was able to stereo-specific epoxidation of cis-propenylphosphonic acid (PPOH) to fosfomycin [(−)-(1R,2S)-1,2-epoxypropylphosphonic acid, FOM] during the cultivation. The product (FOM) was identified by thin layer chromatography and microbiological assay. Under the culture conditions of 28℃, pH 7.5 and 280 r/min, 0.3% concentration of PPOH, reached a level of 2.2 mg/ml of FoM and the yield was 41%. When the PPOH concentration was 0.6%, the yield was 8%.

Key words: Penicillium sp., Cis-propenylphosphonic acid, Fosfomycin, Biotransformation